Drosophila Cancer Modeling Using the Eye Imaginal Discs

Author(s):  
Karishma Gangwani ◽  
Kirti Snigdha ◽  
Mardelle Atkins ◽  
Shree Ram Singh ◽  
Madhuri Kango-Singh
1986 ◽  
Vol 261 (12) ◽  
pp. 5575-5583
Author(s):  
J E Natzle ◽  
A S Hammonds ◽  
J W Fristrom
Keyword(s):  

2015 ◽  
Vol 26 (25) ◽  
pp. 4700-4717 ◽  
Author(s):  
Anup Parchure ◽  
Neha Vyas ◽  
Charles Ferguson ◽  
Robert G. Parton ◽  
Satyajit Mayor

Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)–dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.


2011 ◽  
Vol 53 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Ada Repiso ◽  
Cora Bergantiños ◽  
Montserrat Corominas ◽  
Florenci Serras

Sign in / Sign up

Export Citation Format

Share Document