scholarly journals Spectral Spaces Versus Distributive Lattices: A Dictionary

Author(s):  
Henri Lombardi

2010 ◽  
Vol 20 (3) ◽  
pp. 359-393 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
DAVID GABELAIA ◽  
ALEXANDER KURZ

We introduce pairwise Stone spaces as a bitopological generalisation of Stone spaces – the duals of Boolean algebras – and show that they are exactly the bitopological duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many algebraic concepts important in the study of distributive lattices. We also give new bitopological and spectral dualities for Heyting algebras, thereby providing two new alternatives to Esakia's duality.



Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1791
Author(s):  
Artur Piękosz

In this paper, we prove new versions of Stone Duality. The main version is the following: the category of Kolmogorov locally small spaces and bounded continuous mappings is equivalent to the category of spectral spaces with decent lumps and with bornologies in the lattices of (quasi-) compact open sets as objects and spectral mappings respecting those decent lumps and satisfying a boundedness condition as morphisms. Furthermore, it is dually equivalent to the category of bounded distributive lattices with bornologies and with decent lumps of prime filters as objects and homomorphisms of bounded lattices respecting those decent lumps and satisfying a domination condition as morphisms. This helps to understand Kolmogorov locally small spaces and morphisms between them. We comment also on spectralifications of topological spaces.



Author(s):  
U. M. Swamy ◽  
Ch. Santhi Sundar Raj ◽  
A. Natnael Teshale


Author(s):  
Mukkamala Sambasiva Rao




2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wesley Fussner ◽  
Mai Gehrke ◽  
Samuel J. van Gool ◽  
Vincenzo Marra

Abstract We provide a new perspective on extended Priestley duality for a large class of distributive lattices equipped with binary double quasioperators. Under this approach, non-lattice binary operations are each presented as a pair of partial binary operations on dual spaces. In this enriched environment, equational conditions on the algebraic side of the duality may more often be rendered as first-order conditions on dual spaces. In particular, we specialize our general results to the variety of MV-algebras, obtaining a duality for these in which the equations axiomatizing MV-algebras are dualized as first-order conditions.



Order ◽  
2021 ◽  
Author(s):  
Peter Köhler

AbstractThe paper presents a method of composing finite distributive lattices from smaller pieces and applies this to construct the finitely generated free distributive lattices from appropriate Boolean parts.



2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.



Author(s):  
Gezahagne Mulat Addis

For a given ideal [Formula: see text] of an almost distributive lattice [Formula: see text], we study the smallest and the largest congruence relation on [Formula: see text] having [Formula: see text] as a congruence class.



2001 ◽  
Vol 174 (2) ◽  
pp. 816-851 ◽  
Author(s):  
Ivan Fedioun ◽  
Nicolas Lardjane ◽  
Iskender Gökalp


Sign in / Sign up

Export Citation Format

Share Document