Congruence relations on almost distributive lattices-II

Author(s):  
Gezahagne Mulat Addis

For a given ideal [Formula: see text] of an almost distributive lattice [Formula: see text], we study the smallest and the largest congruence relation on [Formula: see text] having [Formula: see text] as a congruence class.

2020 ◽  
Vol 18 (1) ◽  
pp. 122-137
Author(s):  
Yongwei Yang ◽  
Kuanyun Zhu ◽  
Xiaolong Xin

Abstract In this paper, we present a rough set model based on fuzzy ideals of distributive lattices. In fact, we consider a distributive lattice as a universal set and we apply the concept of a fuzzy ideal for definitions of the lower and upper approximations in a distributive lattice. A novel congruence relation induced by a fuzzy ideal of a distributive lattice is introduced. Moreover, we study the special properties of rough sets which can be constructed by means of the congruence relations determined by fuzzy ideals in distributive lattices. Finally, the properties of the generalized rough sets with respect to fuzzy ideals in distributive lattices are also investigated.


2019 ◽  
Vol 4 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Berhanu Assaye ◽  
Mihret Alamneh ◽  
Lakshmi Narayan Mishra ◽  
Yeshiwas Mebrat

AbstractIn this paper, we introduce the concept of dual skew Heyting almost distributive lattices (dual skew HADLs) and characterise it in terms of dual HADL. We define an equivalence relation θ on a dual skew HADL L and prove that θ is a congruence relation on the equivalence class [x]θ so that each congruence class is a maximal rectangular subalgebra and the quotient [y]θ/θ is a maximal lattice image of [x]θ for any y ∈ [x]θ. Moreover, we show that if the set PI (L) of all the principal ideals of an ADL L with 0 is a dual skew Heyting algebra then L becomes a dual skew HADL. Further we present different conditions on which an ADL with 0 becomes a dual skew HADL.


2021 ◽  
Vol 14 (3) ◽  
pp. 207-217
Author(s):  
Tilahun Mekonnen Munie

In the field of many valued logic, lattice valued logic (especially ideals) plays an important role. Nowadays, lattice valued logic is becoming a research area. Researchers introduced weak LI-ideals of lattice implication algebra. Furthermore, other scholars researched LI-ideals of implicative almost distributive lattice. Therefore, the target of this paper was to investigate new development on the extension of LI-ideal theories and properties in implicative almost distributive lattice. So, in this paper, the notion of weak LI-ideals and maximal weak LI- ideals of implicative almost distributive lattice are defined. The properties of weak LI- ideals in implicative almost distributive lattice are studied and several characterizations of weak LI-ideals are given. Relationship between weak LI-ideals and weak filters are explored. Hence, the extension properties of weak LI-ideal of lattice implication algebra to that of weak LI-ideal of implicative almost distributive lattice were shown.


1971 ◽  
Vol 23 (5) ◽  
pp. 866-874 ◽  
Author(s):  
Raymond Balbes

For a distributive lattice L, let denote the poset of all prime ideals of L together with ∅ and L. This paper is concerned with the following type of problem. Given a class of distributive lattices, characterize all posets P for which for some . Such a poset P will be called representable over. For example, if is the class of all relatively complemented distributive lattices, then P is representable over if and only if P is a totally unordered poset with 0, 1 adjoined. One of our main results is a complete characterization of those posets P which are representable over the class of distributive lattices which are generated by their meet irreducible elements. The problem of determining which posets P are representable over the class of all distributive lattices appears to be very difficult.


1975 ◽  
Vol 19 (2) ◽  
pp. 238-246 ◽  
Author(s):  
J. Berman ◽  
ph. Dwinger

If L is a pseudocomplemented distributive lattice which is generated by a finite set X, then we will show that there exists a subset G of L which is associated with X in a natural way that ¦G¦ ≦ ¦X¦ + 2¦x¦ and whose structure as a partially ordered set characterizes the structure of L to a great extent. We first prove in Section 2 as a basic fact that each element of L can be obtained by forming sums (joins) and products (meets) of elements of G only. Thus, L considered as a distributive lattice with 0,1 (the operation of pseudocomplementation deleted), is generated by G. We apply this to characterize for example, the maximal homomorphic images of L in each of the equational subclasses of the class Bω of pseudocomplemented distributive lattices, and also to find the conditions which have to be satisfied by G in order that X freely generates L.


1970 ◽  
Vol 13 (1) ◽  
pp. 139-140 ◽  
Author(s):  
G. Grätzer ◽  
B. Wolk

The theorem stated below is due to R. Balbes. The present proof is direct; it uses only the following two well-known facts: (i) Let K be a category of algebras, and let free algebras exist in K; then an algebra is projective if and only if it is a retract of a free algebra, (ii) Let F be a free distributive lattice with basis {xi | i ∊ I}; then ∧(xi | i ∊ J0) ≤ ∨(xi | i ∊ J1) implies J0∩J1≠ϕ. Note that (ii) implies (iii): If for J0 ⊆ I, a, b ∊ F, ∧(xi | i ∊ J0)≤a ∨ b, then ∧ (xi | i ∊ J0)≤ a or b.


1983 ◽  
Vol 26 (4) ◽  
pp. 446-453
Author(s):  
G. Gierz ◽  
J. D. Lawson ◽  
A. R. Stralka

AbstractA lattice is said to be essentially metrizable if it is an essential extension of a countable lattice. The main result of this paper is that for a completely distributive lattice the following conditions are equivalent: (1) the interval topology on L is metrizable, (2) L is essentially metrizable, (3) L has a doubly ordergenerating sublattice, (4) L is an essential extension of a countable chain.


1954 ◽  
Vol 10 (2) ◽  
pp. 76-77
Author(s):  
H. A. Thueston

Among the many papers on the subject of lattices I have not seen any simple discussion of the congruences on a distributive lattice. It is the purpose of this note to give such a discussion for lattices with a certain finiteness. Any distributive lattice is isomorphic with a ring of sets (G. Birkhoff, Lattice Theory, revised edition, 1948, p. 140, corollary to Theorem 6); I take the case where the sets are finite. All finite distributive lattices are covered by this case.


1981 ◽  
Vol 33 (2) ◽  
pp. 404-411 ◽  
Author(s):  
G. Gratzer ◽  
A. P. Huhn ◽  
H. Lakser

A lattice L is finitely presented (or presentable) if and only if it can be described with finitely many generators and finitely many relations. Equivalently, L is the lattice freely generated by a finite partial lattice A, in notation, L = F(A). (For more detail, see Section 1.5 of [6].)It is an old “conjecture” of lattice theory that in a finitely presented (or presentable) lattice the elements behave “freely” once we get far enough from the generators.In this paper we prove a structure theorem that could be said to verify this conjecture.THEOREM 1. Let L be a finitely presentable lattice. Then there exists a congruence relation θ such that L/θ is finite and each congruence class is embeddable in a free lattice.


1972 ◽  
Vol 7 (3) ◽  
pp. 377-385 ◽  
Author(s):  
Herbert S. Gaskill

In this note we examine the relationship of a distributive lattice to its lattice of ideals. Our main result is that a distributive lattice and its lattice of ideals share exactly the same collection of finite sublattices. In addition we give a related result characterizing those finite distributive lattices L which can be embedded in a lattice L′ whenever they can be embedded in its lattice of ideals T(L′).


Sign in / Sign up

Export Citation Format

Share Document