Pareto Optimal Solution for Multi-objective Optimization in Wireless Sensor Networks

Author(s):  
Haimanot Bitew Alemayehu ◽  
Mekuanint Agegnehu Bitew ◽  
Birhanu Gardie Shiret
2010 ◽  
Vol 29-32 ◽  
pp. 2496-2502
Author(s):  
Min Wang ◽  
Jun Tang

The number of base station location impact the network quality of service. A new method is proposed based on immune genetic algorithm for site selection. The mathematical model of multi-objective optimization problem for base station selection and the realization of the process were given. The use of antibody concentration selection ensures the diversity of the antibody and avoiding the premature convergence, and the use of memory cells to store Pareto optimal solution of each generation. A exclusion algorithm of neighboring memory cells on the updating and deleting to ensure that the Pareto optimal solution set of the distribution. The experiments results show that the algorithm can effectively find a number of possible base station and provide a solution for the practical engineering application.


2017 ◽  
Vol 13 (4) ◽  
pp. 345-369
Author(s):  
Kamel Barka ◽  
Azeddine Bilami ◽  
Samir Gourdache

Purpose The purpose of this paper is to ensure power efficiency in wireless sensor networks (WSNs) through a new framework-oriented middleware, based on a biologically inspired mechanism that uses an evolutionary multi-objective optimization algorithm. The authors call this middleware framework multi-objective optimization for wireless sensor networks (MONet). Design/methodology/approach In MONet, the middleware level of each network node autonomously adjusts its routing parameters according to dynamic network conditions and seeks optimal trade-offs among performance objectives for a balance of its global performance. MONet controls the cooperation between agents (network nodes) while varying transmission paths to reduce and distribute power consumption equitably on all the sensor nodes of network. MONet-runtime uses a modified TinyDDS middleware platform. Findings Simulation results confirm that MONet allows power efficiency to WSN nodes while adapting their sleep periods and self-heal false-positive sensor data. Originality/value The framework implementation is lightweight and efficient enough to run on resource-limited nodes such as sensor nodes.


Sign in / Sign up

Export Citation Format

Share Document