Advances in Rainfall Thresholds for Landslide Triggering in Italy

2020 ◽  
pp. 247-263
Author(s):  
Stefano Luigi Gariano ◽  
Samuele Segoni ◽  
Luca Piciullo
2021 ◽  
Author(s):  
Nunziarita Palazzolo ◽  
David J. Peres ◽  
Enrico Creaco ◽  
Antonino Cancelliere

<p>Landslide triggering thresholds provide the rainfall conditions that are likely to trigger landslides, therefore their derivation is key for prediction purposes. Different variables can be considered for the identification of thresholds, which commonly are in the form of a power-law relationship linking rainfall event duration and intensity or cumulated event rainfall. The assessment of such rainfall thresholds generally neglects initial soil moisture conditions at each rainfall event, which are indeed a predisposing factor that can be crucial for the proper definition of the triggering scenario. Thus, more studies are needed to understand whether and the extent to which the integration of the initial soil moisture conditions with rainfall thresholds could improve the conventional precipitation-based approach. Although soil moisture data availability has hindered such type of studies, yet now this information is increasingly becoming available at the large scale, for instance as an output of meteorological reanalysis initiatives. In particular, in this study, we focus on the use of the ERA5-Land reanalysis soil moisture dataset. Climate reanalysis combines past observations with models in order to generate consistent time series and the ERA5-Land data actually provides the volume of water in soil layer at different depths and at global scale. Era5-Land project is, indeed, a global dataset at 9 km horizontal resolution in which atmospheric data are at an hourly scale from 1981 to present. Volumetric soil water data are available at four depths ranging from the surface level to 289 cm, namely 0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm. After collecting the rainfall and soil moisture data at the desired spatio-temporal resolution, together with the target data discriminating landslide and no-landslide events, we develop automatic triggering/non-triggering classifiers and test their performances via confusion matrix statistics. In particular, we compare the performances associated with the following set of precursors: a) event rainfall duration and depth (traditional approach), b) initial soil moisture at several soil depths, and c) event rainfall duration and depth and initial soil moisture at different depths. The approach is applied to the Oltrepò Pavese region (northern Italy), for which the historical observed landslides have been provided by the IFFI project (Italian landslides inventory). Results show that soil moisture may allow an improvement in the performances of the classifier, but that the quality of the landslide inventory is crucial.</p>


2021 ◽  
Author(s):  
Guoqiang Jia ◽  
Stefano Luigi Gariano ◽  
Qiuhong Tang

<p>A better detection of landslide occurrence is critical for disaster prevention and mitigation, and a standing pursuit owing to increasing and widespread impact of slope failures on human activities and natural environment in a changing world. However, the detection of rainfall-induced landslide is limited in some areas by data scarcity and method applicability. In this study, we proposed distributed rainfall thresholds within homogeneous slope units, by considering the interaction of landslide-influencing geo-environmental conditions and landslide-triggering rainfall variables. Homogeneous slope units are extracted based on detailed terrain analysis. Various landforms are identified and used to obtain slope units with homogeneous slope traits. The concept behind the distributed rainfall threshold models is that rainfall threshold for landslide occurrence varies with geo-environmental conditions such as slope gradient. Thus, a link can be established between landslide-influencing geo-environmental conditions and landslide-triggering rainfall variables. We used elevation, slope, plan and profile curvature, mean annual precipitation and temperature, soil texture and land cover as independent variables. Rainfall duration and cumulated rainfall of landslide-triggering rainfall events are automatically calculated and used, the former as one of independent variables, and the latter as the dependent variable. A support vector regression (SVR) and a multiple linear regression (MLR) method are used. The error and correlation coefficient measurement indicate a better performance of SVR method. Compared with grid units, the model scores high accuracy for slope units. The models are implemented at a regional scale (Guangdong, China). The SVR model in slope units ran with error of 0.16 mm and correlation coefficient of 0.93.</p>


2012 ◽  
pp. 455-463
Author(s):  
Yasuhiro Shuin ◽  
Norifumi Hotta ◽  
Masakazu Suzuki ◽  
Keigo Matsue ◽  
Kazuhiro Aruga ◽  
...  

2019 ◽  
Vol 100 (2) ◽  
pp. 655-670 ◽  
Author(s):  
Stefano Luigi Gariano ◽  
Massimo Melillo ◽  
Silvia Peruccacci ◽  
Maria Teresa Brunetti

AbstractIn many areas of the world, the prediction of rainfall-induced landslides is usually carried out by means of empirical rainfall thresholds. Their definition is complicated by several issues, among which are the evaluation and quantification of diverse uncertainties resulting from data and methods. Threshold effectiveness and reliability strongly depend on the quality and quantity of rainfall measurements and landslide information used as input. In this work, the influence of the temporal resolution of rainfall measurements on the calculation of landslide-triggering rainfall thresholds is evaluated and discussed. For the purpose, hourly rainfall measurements collected by 172 rain gauges and geographical and temporal information on the occurrence of 561 rainfall-induced landslides in Liguria region (northern Italy) in the period 2004–2014 are used. To assess the impact of different temporal resolutions on the thresholds, rainfall measurements are clustered in increasing bins of 1, 3, 6, 12 and 24 h. A comprehensive tool is applied to each dataset to automatically reconstruct the rainfall conditions responsible for the failures and to calculate frequentist cumulated event rainfall–rainfall duration (ED) thresholds. Then, using a quantitative procedure, the calculated ED thresholds are validated. The main finding of the work is that the use of rainfall measurements with different temporal resolutions results in considerable variations of the shape and the validity range of the thresholds. Decreasing the rainfall temporal resolution, thresholds with smaller intercepts, higher slopes, shorter ranges of validity and higher uncertainties are obtained. On the other hand, it seems that the rainfall temporal resolution does not influence the validation procedure and the threshold performance indicators. Overall, the use of rainfall data with coarse temporal resolution causes a systematic underestimation of thresholds at short durations, resulting in relevant drawbacks (e.g. false alarms) if the thresholds are implemented in operational systems for landslide prediction.


Sign in / Sign up

Export Citation Format

Share Document