rainfall duration
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 9 ◽  
Author(s):  
Qingqing Zhang ◽  
Laigui Wang ◽  
Huabin Zhang

In order to analyze the effects of rainfall events on the stability of an open-pit rock slope, with considering the spatial variability of saturated hydraulic conductivity, based on the unsaturated seepage theory and the random filed theory, modified functions of the unit saturation, the hydraulic conductivity (k), and the shear strength parameters are established for unsaturated slope, by using FISH and the non-intrusive stochastic method. A saturated-unsaturated seepage random field model is proposed. And then the impacts of the rainfall intensity, the rainfall duration, and the spatial variability of saturated hydraulic conductivity (ks) on the infiltration process and stability of the unsaturated rock slope are analyzed. The results show that the proposed model can estimate rainfall infiltration of rock slope accurately. Rainfall mainly affects the seepage field in the shallow layer of the slope, where a transient saturated zone can be formed. With the development of the rainfall duration, the weight of the rock mass increased, the matric suction reduced, the negative pore pressure, the degree of saturation, and the infiltration depth of the rock slope increased, and the water in the slope root connects with the initial water table gradually, the unsaturated zone shrinks, which causes the safety factor of the model decreases, but the trend of change slows down gradually. As the rainfall intensity strengthened, the infiltration depth increased and the safety factor of the slope reduced, while the changing rate increases first and then decreases. Increasing the correlation length of k can reduces the infiltration depth and safety factor of the slope. Increasing the variation coefficient of k will increase the infiltration depth, while the safety factor of the slope decreases. The infiltration depth and safety factor of the slope are most affected by rainfall duration, but its sensitivity to the variability coefficient of k will be strengthened when the rainfall intensity exceeds the infiltration capacity. This conclusion can provide reference significance for the risk estimation of slope geological hazards, which are induced by the rainfall infiltration.


2021 ◽  
Vol 21 (6) ◽  
pp. 285-291
Author(s):  
JongChun Kim ◽  
Jongho Jeong

We revisit empirical methods to prevent the overestimation of peak discharge in a small watershed, in particular investigating the time-area method, which has not been considered in the overestimation problem of peak discharge. To avoid misapplying the same inlet time between the unit hydrograph and rational formula, distinct parameter adjustments for each method are proposed. We adopt the secondary basin response time for the unit hydrograph, rainfall duration for the rational formula, and time of concentration for the time-area method, as suitable parameters to adjust the estimation of peak discharge. In conclusion, adding 10 minutes to secondary basin response time, 20 minutes to rainfall duration, and 30 minutes to time of concentration, respectively, yields estimates within a reasonable range of specific discharge in a small watershed.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3569
Author(s):  
Shanghui Li ◽  
Zhenliang Jiang ◽  
Yun Que ◽  
Xian Chen ◽  
Hui Ding ◽  
...  

The unsaturated seepage field coupled with heavy rainfall-induced surface flow mainly accounts for the slope instability. If the slope contains macropores, the coupled model and solution process significantly differ from the traditional one (without macropores). Most of the studies on the variation of the water field under the coupled effect of runoff and seepage on the slope did not consider the macropore structure. In this paper, two coupled Richards equations were used to describe the MF (Macropore Flow), and along with the kinematic wave equation, they were applied to establish a coupled model of SR (Slope Runoff) and MF. The numerical solving of the coupled model was realized by the COMSOL PDE finite element method, and an innovative laboratory test was conducted to verify the numerical results. The effects of different factors (i.e., rainfall intensity, rainfall duration, saturated conductivity, and slope roughness coefficient) on water content and ponding depth with and without macropores were compared and analyzed. The results show that infiltration is more likely to happen in MF than UF (Unsaturated Flow, without macropore). The depths of the saturation zone and the wetting front of MF are obviously greater than those of UF. When SR occurs, rainfall duration has the most significant influence on infiltration. When macropores are considered, the ponding depth is smaller at the beginning of rainfall, while the effects are not obvious in the later period. Rain intensity and roughness coefficient have significant influences on the ponding depth. Therefore, macropores should not be ignored in the analysis of the slope seepage field.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1796
Author(s):  
Yunan Lu ◽  
Jinli Xie ◽  
Cheng Yang ◽  
Yinghong Qin

Urban flooding has become a serious but not well-resolved problem during the last decades. Traditional mainstream facilities, such as vegetated roofs, permeable pavements, and others, are effective to eliminate urban flooding only in case of small rains because the water-retaining and detaining capacities of these traditional facilities are limited. Here, we propose a new buffer tank buried in soil to deal with rainwater onsite as peak-flow control for urban flooding mitigation. Experiments showed that the buffer tank intercepts the surface runoff and discharges the intercepted water through a designed outlet orifice. By properly setting the cross-sectional area of the orifice, the tank extends the drainage duration several times longer than that of the rainfall duration. It is found that the buffer tank attenuates the peak flow greater at heavier rain. At small rain (<2.5 mm), the tank is always unfilled, preserving storage spaces for detaining rainwater in case of heavy rain. The buffer tank is thus greatly helpful to mitigate the flooding problem, avoiding being saturated by small long-lasting rain.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Gang Huang ◽  
Mingxin Zheng ◽  
Jing Peng

Although vegetation is increasingly used to mitigate landslide risks, how vegetation roots affect the landslide threshold of slope has rarely been explored, particularly in the case of lateral runoff. In this study, we established a two-dimensional saturated-unsaturated infiltration equation considering the hydraulic effects of vegetation roots. The analytical solution for the shallow unsaturated two-dimensional coupled infiltration of vegetated slope (VS) was obtained by a Fourier transform technique. The numerical method was used to evaluate the stability of VS caused by four root architectures, the rainfall amount, and the rainfall duration. Subsequently, the transformation law in runoff, vegetation evaporation, and landslide threshold was analyzed. The results indicate that the factor of safety (FOS) increases with increasing drying time and decreases with increasing depth; the minimum FOS is at the junction of the root-rootless zone. Runoff and vegetation evaporation are favorable for the shallow stability of VS. The time of the safe area is 35 h for rainfall amount 500 m in the uniformly root clay slope. Moreover, four landslide threshold curves that reflected the root architecture, rainfall amount, and rainfall duration are developed, which are more realistic than those created using one-dimensional instability modeling.


Author(s):  
Nizeyimana Jean Claude ◽  
Shanshan Lin ◽  
Ndayisenga Fabrice ◽  
Gratien Twagirayezu ◽  
Junaid Khan ◽  
...  

Due to the increase in the emission of greenhouse gases, the hydrologic cycle is being altered on the daily basis. This has affected the variations in relations of intensity, duration, and frequency of rainfall events. Intensity Duration Frequency (IDF) curves describe the relationship between rainfall intensity, rainfall duration and return period. IDF curves are one of the most often applied implements in water resource engineering, in areas such as for operating, planning and designing of water resource projects, or for numerous engineering projects aimed at controlling floods. In particular, IDF curves for precipitation answer problems of improper drainage systems or conditions and extreme characters of precipitation which are the main cause of floods in Nyabugogo catchment. This study aims to establish Rainfall IDF empirical equations, curves and hydrological discharge (predicted peak rate of runoff (Qlogy)) equations for eight Districts that will be used for designing an appropriate and sustainable hydraulic structures for controlling flood to reduce potential loss of human and aquatic life, degradation of water, air and soil quality and property damage and economic lessen caused by flood in Nyabugogo catchment. However Goodness of Fit tests revealed that Gumbel&rsquo;s Extreme-Value Distribution method appears to have the most appropriate fit compared with Pearson type III distribution for validating the Intensity-Duration-Frequency curves and equations through the use of daily annual for each meteorological station. The findings of the study show that the intensity of rainfall increases with a decrease in rainfall duration. Additionally, a rainfall of every known duration will have a higher intensity if its return period is high, while the predicted peak rate of runoff (Qlogy) increases also with an increase in the intensity of rainfall.


2021 ◽  
Vol 4 ◽  
Author(s):  
Katarina Zabret ◽  
Mojca Šraj

The process of rainfall partitioning is usually addressed by three components: rainfall interception, throughfall and stemflow. The occurrence and proportion of stemflow depends on many complexly interconnected factors. To contribute to the interpretation of these interdependencies, the influence of rainfall event characteristics and phenoseasons on stemflow development was analyzed with a new approach. In this study we have focused on the development of stemflow during 156 rainfall events with complete time series records for a single birch tree (Betula pendula Roth.) at a study plot in the city of Ljubljana, Slovenia. For each one of the selected events, diagrams of rainfall and stemflow development during the event were prepared and grouped according to their visual similarities using hierarchical clustering. Additionally, significant meteorological characteristics were determined for each group of events. Four characteristic types of stemflow response were identified and connected to the corresponding event characteristics. Events showing negligible stemflow response to rainfall increase were characterized with rainfall amounts lower than 5 mm, high rainfall intensities, and occurrence in the leafed phenophase. A slow stemflow increase, independent of the increase of the rainfall volume in the open, was recognized for rainfall events delivering less than 20 mm of rainfall during a 5-h duration on average. The majority of these events were observed in the leafed phenophase, corresponding to higher air temperature and vapor pressure deficit. The occurrence of stemflow events, whose development followed the increase of the rainfall amount, was not dependent on the phenophase. However, during these events the average air temperature and vapor pressure deficit were lower, the rainfall amount was larger and the rainfall duration longer in comparison to the events showing independent increase with rainfall. The fourth type of response of stemflow was defined by a strong stemflow response in connection to large rainfall amounts and the longest rainfall duration, as observed for events in the leafless period. The four characteristic types of stemflow response provide additional information on the possible proportion of the rainfall reaching the ground as stemflow.


2021 ◽  
pp. 117382
Author(s):  
Lei Yan ◽  
Lihong Xue ◽  
Evangelos Petropoulos ◽  
Cong Qian ◽  
Pengfu Hou ◽  
...  

Author(s):  
Chengshuai Liu ◽  
Fan Yang ◽  
caihong hu ◽  
Yichen Yao ◽  
Yue Sun ◽  
...  

In order to realize the reproduction and simulation of urban rainstorm and waterlogging scenarios with complex underlying surfaces. Based on the Mike series models, we constructed an urban storm-flood coupling model considering one-dimensional river channels, two-dimensional ground and underground pipe networks. Luoyang City was used as a pilot to realize the construction of a one-dimensional and two-dimensional coupled urban flood model and flood simulation. where is located in the western part of Henan Province, China. The coupled model was calibrated and verified by the submerged water depths of 16 survey points in two historical storms flood events. The average relative error of the calibration simulated water depth was 22.65%, and the average absolute error was 13.93cm; the average relative error of the verified simulated water depth was 15.27%, The average absolute error is 7.54cm, and the simulation result is good. Finally, 28 rains with different return periods and different durations were designed to simulate and analyze the rainstorm inundation in the downtown area of Luoyang. The result shows that the R2 of rainfall and urban rainstorm inundation is 0.8776, and the R2 of rainfall duration and urban rainstorm inundation is 0.8141. Therefore, rainfall is the decisive factor in the formation of urban waterlogging disasters, which is actually the rainfall duration. The study results have important practical significance for urban flood prevention, disaster reduction and traffic emergency management.


2021 ◽  
Author(s):  
Nunziarita Palazzolo ◽  
David J. Peres ◽  
Enrico Creaco ◽  
Antonino Cancelliere

&lt;p&gt;Landslide triggering thresholds provide the rainfall conditions that are likely to trigger landslides, therefore their derivation is key for prediction purposes. Different variables can be considered for the identification of thresholds, which commonly are in the form of a power-law relationship linking rainfall event duration and intensity or cumulated event rainfall. The assessment of such rainfall thresholds generally neglects initial soil moisture conditions at each rainfall event, which are indeed a predisposing factor that can be crucial for the proper definition of the triggering scenario. Thus, more studies are needed to understand whether and the extent to which the integration of the initial soil moisture conditions with rainfall thresholds could improve the conventional precipitation-based approach. Although soil moisture data availability has hindered such type of studies, yet now this information is increasingly becoming available at the large scale, for instance as an output of meteorological reanalysis initiatives. In particular, in this study, we focus on the use of the ERA5-Land reanalysis soil moisture dataset. Climate reanalysis combines past observations with models in order to generate consistent time series and the ERA5-Land data actually provides the volume of water in soil layer at different depths and at global scale. Era5-Land project is, indeed, a global dataset at 9 km horizontal resolution in which atmospheric data are at an hourly scale from 1981 to present. Volumetric soil water data are available at four depths ranging from the surface level to 289 cm, namely 0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm. After collecting the rainfall and soil moisture data at the desired spatio-temporal resolution, together with the target data discriminating landslide and no-landslide events, we develop automatic triggering/non-triggering classifiers and test their performances via confusion matrix statistics. In particular, we compare the performances associated with the following set of precursors: a) event rainfall duration and depth (traditional approach), b) initial soil moisture at several soil depths, and c) event rainfall duration and depth and initial soil moisture at different depths. The approach is applied to the Oltrep&amp;#242; Pavese region (northern Italy), for which the historical observed landslides have been provided by the IFFI project (Italian landslides inventory). Results show that soil moisture may allow an improvement in the performances of the classifier, but that the quality of the landslide inventory is crucial.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document