Improving Brain Tumor Segmentation in Multi-sequence MR Images Using Cross-Sequence MR Image Generation

Author(s):  
Guojing Zhao ◽  
Jianpeng Zhang ◽  
Yong Xia
Author(s):  
Prabhjot Kaur ◽  
Amardeep Kaur

In the medical field brain tumor detection is an important application. The existing techniques of segmentation has various limitations. Existing techniques ignored the medical images which have poor quality or low brightness. Segmentation becomes the challenging issue as the image contains non-uniform object texture, cluttered objects, different image content and image noise. New technique of segmentation is proposed by research to detect tumor from MR images using firefly algorithm, then tumor is segmented and its features are extracted from MR image.  The main goal of Research to design an algorithm for MRI based brain tumor segmentation using firefly algorithm and to improve the accuracy of the tumor detection. Fireflies produce a reaction in their body which produce light , this chemical reaction is called bioluminescent. By using firefly technique it is possible to detect and localize tumor accurately. For comparative analysis, various parameters are used to demonstrate the superiority of proposed method over the conventional ones.


2021 ◽  
Vol 15 (1) ◽  
pp. 37-42
Author(s):  
M. Ravikumar ◽  
B.J. Shivaprasad

In recent years, deep learning based networks have achieved good performance in brain tumour segmentation of MR Image. Among the existing networks, U-Net has been successfully applied. In this paper, it is propose deep-learning based Bidirectional Convolutional LSTM XNet (BConvLSTMXNet) for segmentation of brain tumor and using GoogLeNet classify tumor & non-tumor. Evaluated on BRATS-2019 data-set and the results are obtained for classification of tumor and non-tumor with Accuracy: 0.91, Precision: 0.95, Recall: 1.00 & F1-Score: 0.92. Similarly for segmentation of brain tumor obtained Accuracy: 0.99, Specificity: 0.98, Sensitivity: 0.91, Precision: 0.91 & F1-Score: 0.88.


Author(s):  
Palash Ghosal ◽  
Shanmukha Reddy ◽  
Charan Sai ◽  
Vikas Pandey ◽  
Jayasree Chakraborty ◽  
...  

2013 ◽  
Vol 37 (7-8) ◽  
pp. 522-537 ◽  
Author(s):  
Kiran Thapaliya ◽  
Jae-Young Pyun ◽  
Chun-Su Park ◽  
Goo-Rak Kwon

Sign in / Sign up

Export Citation Format

Share Document