scholarly journals Bidirectional ConvLSTMXNet for Brain Tumor Segmentation of MR Images

2021 ◽  
Vol 15 (1) ◽  
pp. 37-42
Author(s):  
M. Ravikumar ◽  
B.J. Shivaprasad

In recent years, deep learning based networks have achieved good performance in brain tumour segmentation of MR Image. Among the existing networks, U-Net has been successfully applied. In this paper, it is propose deep-learning based Bidirectional Convolutional LSTM XNet (BConvLSTMXNet) for segmentation of brain tumor and using GoogLeNet classify tumor & non-tumor. Evaluated on BRATS-2019 data-set and the results are obtained for classification of tumor and non-tumor with Accuracy: 0.91, Precision: 0.95, Recall: 1.00 & F1-Score: 0.92. Similarly for segmentation of brain tumor obtained Accuracy: 0.99, Specificity: 0.98, Sensitivity: 0.91, Precision: 0.91 & F1-Score: 0.88.

Brain tumors are the result of unusual growth and unrestrained cell disunity in the brain. Most of the medical image application lack in segmentation and labeling. Brain tumors can lead to loss of lives if they are not detected early and correctly. Recently, deep learning has been an important role in the field of digital health. One of its action is the reduction of manual decision in the diagnosis of diseases specifically brain tumor diagnosis needs high accuracy, where minute errors in judgment may lead to loss therefore, brain tumor segmentation is an necessary challenge in medical side. In recent time numerous ,methods exist for tumor segmentation with lack of accuracy. Deep learning is used to achieve the goal of brain tumor segmentation. In this work, three network of brain MR images segmentation is employed .A single network is compared to achieve segmentation of MR images using separate network .In this paper segmentation has improved and result is obtained with high accuracy and efficiency.


Author(s):  
Prabhjot Kaur ◽  
Amardeep Kaur

In the medical field brain tumor detection is an important application. The existing techniques of segmentation has various limitations. Existing techniques ignored the medical images which have poor quality or low brightness. Segmentation becomes the challenging issue as the image contains non-uniform object texture, cluttered objects, different image content and image noise. New technique of segmentation is proposed by research to detect tumor from MR images using firefly algorithm, then tumor is segmented and its features are extracted from MR image.  The main goal of Research to design an algorithm for MRI based brain tumor segmentation using firefly algorithm and to improve the accuracy of the tumor detection. Fireflies produce a reaction in their body which produce light , this chemical reaction is called bioluminescent. By using firefly technique it is possible to detect and localize tumor accurately. For comparative analysis, various parameters are used to demonstrate the superiority of proposed method over the conventional ones.


2019 ◽  
Author(s):  
Chandan Ganesh Bangalore Yogananda ◽  
Sahil S. Nalawade ◽  
Gowtham K. Murugesan ◽  
Ben Wagner ◽  
Marco C. Pinho ◽  
...  

ABSTRACTTumor segmentation of magnetic resonance (MR) images is a critical step in providing objective measures of predicting aggressiveness and response to therapy in gliomas. It has valuable applications in diagnosis, monitoring, and treatment planning of brain tumors. The purpose of this work was to develop a fully automated deep learning method for brain tumor segmentation and survival prediction. Well curated brain tumor cases with multi-parametric MR Images from the BraTS2019 dataset were used. A three-group framework was implemented, with each group consisting of three 3D-Dense-UNets to segment whole tumor (WT), tumor core (TC) and enhancing tumor (ET). This method was implemented to decompose the complex multi-class segmentation problem into individual binary segmentation problems for each sub-component. Each group was trained using different approaches and loss functions. The output segmentations of a particular label from their respective networks from the 3 groups were ensembled and post-processed. For survival analysis, a linear regression model based on imaging texture features and wavelet texture features extracted from each of the segmented components was implemented. The networks were tested on the BraTS2019 validation dataset including 125 cases for the brain tumor segmentation task and 29 cases for the survival prediction task. The segmentation networks achieved average dice scores of 0.901, 0.844 and 0.801 for WT, TC and ET respectively. The survival prediction network achieved an accuracy score of 0.55 and mean squared error (MSE) of 119244. This method could be implemented as a robust tool to assist clinicians in primary brain tumor management and follow-up.


Brain tumor Detection is a primary concern in today’s life. So a computer aided technology must be implemented for an accurate detection and identification of brain tumor. The tumor can be detected using various classification techniques from brain MR Images. In this paper segmentation process is being done using K means Clustering technique and Binary Thresholding, the features from the images are then extracted using GLCM where six texture features are extracted and SVM Classifier is being used for classification of the images. This proposed method shows an accuracy of 97.12%.


2021 ◽  
Vol 7 (2) ◽  
pp. 19
Author(s):  
Tirivangani Magadza ◽  
Serestina Viriri

Quantitative analysis of the brain tumors provides valuable information for understanding the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires more than one image modalities with varying contrasts. As a result, manual segmentation, which is arguably the most accurate segmentation method, would be impractical for more extensive studies. Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering performance. However, medical image analysis has its unique challenges. This paper presents a review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting their building blocks and various strategies. We end with a critical discussion of open challenges in medical image analysis.


Sign in / Sign up

Export Citation Format

Share Document