Introduction to Evaporative Heat Transfer

Author(s):  
Manish Bhendura ◽  
K. Muralidhar ◽  
Sameer Khandekar
Author(s):  
Ajay Kumar Kaviti ◽  
Akkala Siva Ram ◽  
Amit Kumar Thakur

In this experimental study, permanent magnets with three different sizes (M-1: 32 mm inner diameter, 70 mm outer diameter and 15 mm thick, M-2: 25 mm inner diameter, 60 mm outer diameter and 10 mm thick, M-3: 22 mm inner diameter, 45 mm outer diameter and 9 mm thick) are fully submerged in the single-slope glass solar still. The performance of magnetic solar stills (MSS) with three different sizes at 2 cm depth water to ensure that magnets are fully submerged is compared with conventional solar still (CSS) at the location 17.3850°N, 78.4867°E. Tiwari model is adapted to calculate the heat transfer coefficients (HTC), internal and exergy efficiencies. MSS with M-1, M-2 and M-3 significantly enhanced the convective, radiative, and evaporative heat transfer rate for the 2 cm depth of water. This is due to the desired magnetic treatment of water, which reduces the surface tension and increases the hydrogen bonds. The MSS's total internal HTC, instantaneous efficiencies led CSS by 25.52%, 28.8%, respectively, with M-1. Having various magnetic fields due to different magnets sizes increases MSS's exergetic efficiency by 33.61% with M-1, 33.76% with M-2, and 42.25% with M-3. Cumulative yield output for MSS with M-1, M-2, and M-3 is 21.66%, 17.64%, 15.78% higher than CSS. The use of permanent magnets of different sizes in the MSS is a viable, economical and straight forward technique to enhance productivity.


2017 ◽  
Vol 15 (3) ◽  
pp. 467
Author(s):  
Ravinder Kumar Sahdev ◽  
Mahesh Kumar ◽  
Ashwani Kumar Dhingra

In this paper, convective and evaporative heat transfer coefficients of the Indian groundnut were computed under indoor forced convection drying (IFCD) mode. The groundnuts were dried as a single thin layer with the help of a laboratory dryer till the optimum safe moisture storage level of 8 – 10%. The experimental data were used to determine the values of experimental constants C and n in the Nusselt number expression by a simple linear regression analysis and consequently, the convective heat transfer coefficient (CHTC) was determined. The values of CHTC were used to calculate the evaporative heat transfer coefficient (EHTC). The average values of CHTC and EHTC were found to be 2.48 W/m2 oC and 35.08 W/m2 oC, respectively. The experimental error in terms of percent uncertainty was also estimated. The experimental error in terms of percent uncertainty was found to be 42.55%. The error bars for convective and evaporative heat transfer coefficients are also shown for the groundnut drying under IFCD condition.


Sign in / Sign up

Export Citation Format

Share Document