Two-phase annular flow and evaporative heat transfer in a microchannel

2011 ◽  
Vol 32 (2) ◽  
pp. 440-450 ◽  
Author(s):  
Yun Whan Na ◽  
J.N. Chung
Author(s):  
Hiroshi Kanno ◽  
Youngbae Han ◽  
Yusuke Saito ◽  
Naoki Shikazono

Heat transfer in micro scale two-phase flow attracts large attention since it can achieve large heat transfer area per density. At high quality, annular flow becomes one of the major flow regimes in micro two-phase flow. Heat is transferred by evaporation or condensation of the liquid film, which are the dominant mechanisms of micro scale heat transfer. Therefore, liquid film thickness is one of the most important parameters in modeling the phenomena. In macro tubes, large numbers of researches have been conducted to investigate the liquid film thickness. However, in micro tubes, quantitative information for the annular liquid film thickness is still limited. In the present study, annular liquid film thickness is measured using a confocal method, which is used in the previous study [1, 2]. Glass tubes with inner diameters of 0.3, 0.5 and 1.0 mm are used. Degassed water and FC40 are used as working fluids, and the total mass flux is varied from G = 100 to 500 kg/m2s. Liquid film thickness is measured by laser confocal displacement meter (LCDM), and the liquid-gas interface profile is observed by a high-speed camera. Mean liquid film thickness is then plotted against quality for different flow rates and tube diameters. Mean thickness data is compared with the smooth annular film model of Revellin et al. [3]. Annular film model predictions overestimated the experimental values especially at low quality. It is considered that this overestimation is attributed to the disturbances caused by the interface ripples.


Author(s):  
Avram Bar-Cohen ◽  
Ilai Sher ◽  
Emil Rahim

The present study is aimed at evaluating the ability of conventional “macro-pipe” correlations and regime transitions to predict the two-phase thermofluid characteristics of mini-channel cold plates. Use is made of the Taitel-Dukler flow regime maps, seven classical heat transfer coefficient correlations and two dryout predictions. The vast majority of the mini-channel two-phase heat-transfer data, taken from the literature, is predicted to fall in the annular regime, in agreement with the reported observations. A characteristic heat transfer coefficient locus has been identified, with a positive slope following the transition from Intermittent to Annular flow and a negative slope following the onset of partial dryout at higher qualities. While the classical two-phase heat transfer correlations are generally capable of providing good agreement with the low-quality annular flow data the quality at which partial dryout occurs and the ensuing heat transfer rates are not predictable by the available macro-pipe correlations.


Author(s):  
Jason Chan ◽  
Brian E. Fehring ◽  
Roman W. Morse ◽  
Kristofer M. Dressler ◽  
Gregory F. Nellis ◽  
...  

Abstract A thermoreflectance method to measure wall temperature in two-phase annular flow is described. In high heat flux conditions, momentary dry-out occurs as the liquid film vaporizes, resulting in dramatic decreases in heat transfer coefficient. Simultaneous liquid and vapor thermoreflectance measurements allow calculations of instantaneous and time-averaged heat transfer coefficients. Validation, calibration and uncertainty of the technique are discussed.


1998 ◽  
Vol 120 (1) ◽  
pp. 156-165 ◽  
Author(s):  
N. Kattan ◽  
J. R. Thome ◽  
D. Favrat

A new heat transfer model for intube flow boiling in horizontal plain tubes is proposed that incorporates the effects of local two-phase flow patterns, flow stratification, and partial dryout in annular flow. Significantly, the local peak in the heat transfer coefficient versus vapor quality can now be determined from the prediction of the location of onset of partial dryout in annular flow. The new method accurately predicts a large, new database of flow boiling data, and is particularly better than existing methods at high vapor qualities (x > 85 percent) and for stratified types of flows.


Author(s):  
Priyadarshan U. Patankar ◽  
Bhalchandra P. Puranik

Boiling heat transfer to fluid flow in microchannel heat sinks is being looked upon as a promising solution to the problem of cooling microprocessors with large power densities. In the present work, an annular flow model [1] is implemented to investigate the boiling heat transfer and two-phase flow characteristics in microchannel heat sinks. A modification in the model for the deposition mass transfer coefficient is proposed to better compare the existing experimental data [2]. The deposition mass transfer coefficient affects the distribution of liquid in the form of entrained droplets and the liquid film. The liquid film thickness is the most significant parameter in the determination of the heat transfer coefficient. The suggested change ensures consistent results for the behavior of the entrained fraction. We further report pressure drop results obtained using the modified annular flow model and a comparison with existing experimental data. Finally, we present results predicted by the annular flow model for non-uniform heating of a microchannel, in an effort to simulate hot spots on a microprocessor chip. A few preliminary results obtained from the modified model to simulate boiling and two-phase flow in a parallel microchannel device with non-uniform heating are presented.


Author(s):  
Sara Beaini ◽  
Van P. Carey

For annular liquid-vapor two-phase flow in straight microchannels, effects of gravity are generally small compared to viscous and/or inertia forces. In serpentine evaporator or condenser passages with semicircular return bends, the bend radius may be so small that large centrifugal body forces are generated as the fluid flows through the bend region of the passage. This paper summarizes a model analysis based on the premise that flow morphology in the bend is dictated by radial acceleration forces and the thermodynamic Second Law requirement that the established two-phase flow morphology minimizes the free energy at the local temperature and pressure. An analytical model is derived relating the dependence of the free energy on vapor core geometry, and the geometry that minimizes free energy is determined numerically. This provides a prediction of the mean thickness of the liquid surrounding the vapor core, and the mean heat transfer coefficient for annular flow vaporization or condensation, as a function of flow parameters and physical properties. When this relation is cast in dimensionless form, the effect of centrifugal acceleration is quantified in terms of a Weber number (We) that represents the ratio of centrifugal body force to surface tension force. The analysis indicates that centrifugal acceleration acts to displace the vapor towards the inside of the curved passage and distort the liquid-vapor interface. Displacement occurs at any level of acceleration. Significant distortion is found to occur only for We > 1. The effects of these morphology changes on heat transfer are analyzed and the implications of these predictions for designing microchannel evaporators and condensers are explored.


2020 ◽  
Vol 44 (3) ◽  
pp. 362-384
Author(s):  
Amen Younes ◽  
Ibrahim Hassan ◽  
Lyes Kadem

A semi-analytical model for predicting heat transfer and pressure drop in annular flow regime for saturated flow boiling in a horizontal microtube at a uniform heat flux has been developed based on a one-dimensional separated flow model. More than 600 two-phase heat transfer, 498 two-phase pressure drop, and 153 void fraction experimental data points for annular flow regime were collected from the literature to validate the present model. The collected data were recorded for various working fluids, R134a, R1234ze, R236fa, R410a, R113, and CO2, for round macro- and microsingle horizontal tubes with an inner diameter range of 0.244 mm ≤ Dh ≤ 3.1 mm, a heated length to diameter ratio of 90 ≤ Lh/Dh ≤ 2000, a saturation temperature range of –10 ≤ Tsat ≤ +50 °C, and liquid to vapor density ratios in the range 6.4 ≤ ρf/ρg ≤ 188. The model was tested for laminar and turbulent flow boiling conditions corresponding to an equivalent Reynolds number, 1900 ≤ Reeq ≤ 48 000, and confinement number, 0.27 ≤ Cconf ≤ 3.4. Under the annular flow regime, the present model predicted the collected data of the heat transfer, pressure drop, and void fraction with mean absolute errors (MAE) of 18.14%, 23.02%, and 3.22%, respectively.


Sign in / Sign up

Export Citation Format

Share Document