Field Theory Formulation of Inflation: A Time Dependent Vacuum and a Scalar Field

Author(s):  
E. B. Manoukian
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
R. A. C. Correa ◽  
A. de Souza Dutra

We study configurations in one-dimensional scalar field theory, which are time-dependent, localized in space, and extremely long-lived, called oscillons. How the action of changing the minimum value of the field configuration representing the oscillon affects its behavior is investigated. We find that one of the consequences of this procedure is the appearance of a pair of oscillon-like structures presenting different amplitudes and frequencies of oscillation. We also compare our analytical results to numerical ones, showing excellent agreement.


2000 ◽  
Vol 579 (1-2) ◽  
pp. 379-410 ◽  
Author(s):  
Alberto Frizzo ◽  
Lorenzo Magnea ◽  
Rodolfo Russo

2011 ◽  
Author(s):  
Angel A. García-Chung ◽  
Hugo A. Morales-Técotl ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
...  

1998 ◽  
Vol 13 (31) ◽  
pp. 2495-2501 ◽  
Author(s):  
KURT LANGFELD ◽  
HUGO REINHARDT

A scalar field theory in four space–time dimensions is proposed, which embodies a scalar condensate, but is free of the conceptual problems of standard ϕ4-theory. We propose an N-component, O(N)-symmetric scalar field theory, which is originally defined on the lattice. The scalar lattice model is analytically solved in the large-N limit. The continuum limit is approached via an asymptotically free scaling. The renormalized theory evades triviality, and furthermore gives rise to a dynamically formed mass of the scalar particle. The model might serve as an alternative to the Higgs sector of the standard model, where the quantum level of the standard ϕ4-theory contradicts phenomenology due to triviality.


2007 ◽  
Vol 22 (06) ◽  
pp. 1265-1278
Author(s):  
ABOUZEID M. SHALABY ◽  
S. T. EL-BASYOUNY

We established a resummed formula for the effective potential of [Formula: see text] scalar field theory that can mimic the true effective potential not only at the critical region but also at any point in the coupling space. We first extend the effective potential from the oscillator representation method, perturbatively, up to g3 order. We supplement perturbations by the use of a resummation algorithm, originally due to Kleinert, Thoms and Janke, which has the privilege of using the strong coupling as well as the large coupling behaviors rather than the conventional resummation techniques which use only the large order behavior. Accordingly, although the perturbation series available is up to g3 order, we found a good agreement between our resummed effective potential and the well-known features from constructive field theory. The resummed effective potential agrees well with the constructive field theory results concerning existing and order of phase transition in the absence of an external magnetic field. In the presence of the external magnetic field, as in magnetic systems, the effective potential shows nonexistence of phase transition and gives the behavior of the vacuum condensate as a monotonic increasing function of J, in complete agreement with constructive field theory methods.


1994 ◽  
Vol 09 (19) ◽  
pp. 1785-1790 ◽  
Author(s):  
O. CASTAÑOS ◽  
R. LÓPEZ-PEÑA ◽  
V.I. MAN’KO

The infinite number of time-dependent linear in field and conjugated momenta invariants is derived for the scalar field using the Noether’s theorem procedure.


Sign in / Sign up

Export Citation Format

Share Document