A Model Management Platform for Industry 4.0 – Enabling Management of Machine Learning Models in Manufacturing Environments

Author(s):  
Christian Weber ◽  
Pascal Hirmer ◽  
Peter Reimann
Author(s):  
Mert Gülçür ◽  
Ben Whiteside

AbstractThis paper discusses micromanufacturing process quality proxies called “process fingerprints” in micro-injection moulding for establishing in-line quality assurance and machine learning models for Industry 4.0 applications. Process fingerprints that we present in this study are purely physical proxies of the product quality and need tangible rationale regarding their selection criteria such as sensitivity, cost-effectiveness, and robustness. Proposed methods and selection reasons for process fingerprints are also justified by analysing the temporally collected data with respect to the microreplication efficiency. Extracted process fingerprints were also used in a multiple linear regression scenario where they bring actionable insights for creating traceable and cost-effective supervised machine learning models in challenging micro-injection moulding environments. Multiple linear regression model demonstrated %84 accuracy in predicting the quality of the process, which is significant as far as the extreme process conditions and product features are concerned.


2021 ◽  
Author(s):  
Peter Burggraef ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro Perez ◽  
...  

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.


2021 ◽  
Author(s):  
Peter Burggraef ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro Perez ◽  
...  

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.


2021 ◽  
Author(s):  
Peter Burggraef ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro Perez ◽  
...  

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.


2021 ◽  
Author(s):  
Peter Burggraef ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro Perez ◽  
...  

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document