Analyzing Spatiotemporal Characteristics of Taxi Drivers’ Cognition to Passenger Source Based on Trajectory Data

Author(s):  
Zihao Wang ◽  
Jun Li ◽  
Yan Zhu ◽  
Zhenwei Li ◽  
Wenle Lu
2021 ◽  
Vol 10 (2) ◽  
pp. 77
Author(s):  
Yitong Gan ◽  
Hongchao Fan ◽  
Wei Jiao ◽  
Mengqi Sun

In China, the traditional taxi industry is conforming to the trend of the times, with taxi drivers working with e-hailing applications. This reform is of great significance, not only for the taxi industry, but also for the transportation industry, cities, and society as a whole. Our goal was to analyze the changes in driving behavior since taxi drivers joined e-hailing platforms. Therefore, this paper mined taxi trajectory data from Shanghai and compared the data of May 2015 with those of May 2017 to represent the before-app stage and the full-use stage, respectively. By extracting two-trip events (i.e., vacant trip and occupied trip) and two-spot events (i.e., pick-up spot and drop-off spot), taxi driving behavior changes were analyzed temporally, spatially, and efficiently. The results reveal that e-hailing applications mine more long-distance rides and new pick-up locations for drivers. Moreover, driver initiative have increased at night since using e-hailing applications. Furthermore, mobile payment facilities save time that would otherwise be taken sorting out change. Although e-hailing apps can help citizens get taxis faster, from the driver’s perspective, the apps do not reduce their cruising time. In general, e-hailing software reduces the unoccupied ratio of taxis and improves the operating ratio. Ultimately, new driving behaviors can increase the driver’s revenue. This work is meaningful for the formulation of reasonable traffic laws and for urban traffic decision-making.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jun Li ◽  
Yan Zhu ◽  
Zhenwei Li ◽  
Wenle Lu ◽  
Yang Ji ◽  
...  

Understanding how urban residents process road network information and conduct wayfinding is important for both individual travel and intelligent transportation. However, most existing research is limited to the heterogeneity of individuals’ expression and perception abilities, and the results based on small samples are weakly representative. This paper proposes a quantitative and population-based evaluation method of wayfinding performance on city-scale road networks based on massive trajectory data. It can accurately compute and visualize the magnitude and spatial distribution differences of drivers’ wayfinding performance levels, which is not achieved by conventional methods based on small samples. In addition, a systematic index set of road network features are constructed for correlation analysis. This is an improvement on the current research, which focuses on the influence of single factors. Finally, taking 20,000 taxi drivers in Beijing as a case study, experimental results show the following: (1) Taxi drivers’ wayfinding performances show a spatial pattern of a high level on arterial road networks and a low level on secondary networks, and they are spatially autocorrelated. (2) The correlation factors of taxi drivers’ wayfinding performances mainly include anchor point, road grade, road importance, road complexity, origin-destination length, and complexity, and each factor has a different influence. (3) The path complexity has a higher correlation with the wayfinding performance level than with the path distance. (4) There is a critical point in the taxi drivers’ wayfinding performances in terms of path distance. When the critical value is exceeded, it is difficult for a driver to find a good route based on personal cognition. This research can provide theoretical and technical support for intelligent driving and wayfinding research.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zuyao Zhang ◽  
Li Tang ◽  
Yifeng Wang ◽  
Xuejun Zhang

Informatica ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Pengfei HAO ◽  
Chunlong YAO ◽  
Qingbin MENG ◽  
Xiaoqiang YU ◽  
Xu LI

2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


2013 ◽  
Vol 33 (6) ◽  
pp. 1604-1607
Author(s):  
Guang YANG ◽  
Lei ZHANG ◽  
Fan LI

Sign in / Sign up

Export Citation Format

Share Document