Impact of Land Use–Land Cover Changes on the Streamflow of the Kolab River Basin Using SWAT Model

Author(s):  
Partha Sarathi Bhunia ◽  
Kanhu Charan Patra
2021 ◽  
Vol 13 (23) ◽  
pp. 13041
Author(s):  
Yuechao Chen ◽  
Makoto Nakatsugawa

The 2018 Hokkaido Eastern Iburi earthquake and its landslides threaten the safety and stability of the Atsuma River basin. This study investigates land use and land cover (LULC) change by analyzing the 2015 and 2020 LULC maps of the basin, and its impact on runoff and sediment transport in the basin by using the soil and water assessment tool (SWAT) model to accurately simulate the runoff and sediment transport process. This study finds that the earthquake and landslide transformed nearly 10% of the forest into bare land in the basin. The simulation results showed that the runoff, which was simulated based on the 2020 LULC data, was slightly higher than that based on the 2015 LULC data, and the sediment transport after the earthquake is significantly higher than before. The rate of sediment transportation after the earthquake, adjusted according to the runoff, was about 3.42 times more than before. This shows that as the forest land decreased, the bare land increased. Conversely, the runoff increased slightly, whereas the sediment transport rate increased significantly in the Atsuma River basin after the earthquake. In future, active governance activities performed by humans can reduce the amount of sediment transport in the basin.


2021 ◽  
Vol 66 (4) ◽  
pp. 640-655
Author(s):  
Henok Mekonnen Aragaw ◽  
Manmohan Kumar Goel ◽  
Surendra Kumar Mishra

2019 ◽  
Vol 11 (5) ◽  
pp. 1360 ◽  
Author(s):  
Fuwen Da ◽  
Xingpeng Chen ◽  
Jinghui Qi

The vegetation response to climatic factors is a hot topic in global change research. With the Support of ArcGIS and ENVI software, six sets of Landsat remote sensing images of the middle and lower reaches of the Shule River Basin were interpreted. Eight types of land use and land covers were obtained and the spatiotemporal characteristics of the land use/land cover changes (LUCCs) were analyzed using an intensity analysis to provide a basis for decision-making on the sustainable development of the basin. In the past 29 years, the area of cropland, construction land and shrubland had a net increase, while high-coverage grassland (HCG), medium-coverage grassland (MCG), low-coverage grassland (LCG), wetland and non-vegetation land all presented a net decrease. The area of artificial vegetation (cropland) presented an expanding trend and increased by 1105.56 km2 in total, while the natural vegetation (grassland, shrubland, wetland) showed a shrinking tendency and decreased by 917.69 km2. The intensity analysis revealed that the rate of LUCC in the period of 2000~2006 and 2006~2010 was relatively higher, although the rate of LUCC in other periods was much lower. The change intensities of MCG and HCG were greatest, followed by LCG, shrubland and wetland. Construction land and cropland were in third place, while non-vegetation land was in last place. The pattern of regional LUCC was generally stable except for cropland loss and the gain/loss change of other land-use/land-cover types was always in an active state. For spatial distribution, few changes were observed in the old irrigated area within the oasis. The LUCC was mainly concentrated in the oasis fringe area, natural vegetation cover area and emigrant arrangement regions.


CATENA ◽  
2019 ◽  
Vol 182 ◽  
pp. 104129 ◽  
Author(s):  
Alfred Awotwi ◽  
Geophrey Kwame Anornu ◽  
Jonathan Arthur Quaye-Ballard ◽  
Thompson Annor ◽  
Eric Kwabena Forkuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document