scholarly journals Analysis of Changes in Land Use/Land Cover and Hydrological Processes Caused by Earthquakes in the Atsuma River Basin in Japan

2021 ◽  
Vol 13 (23) ◽  
pp. 13041
Author(s):  
Yuechao Chen ◽  
Makoto Nakatsugawa

The 2018 Hokkaido Eastern Iburi earthquake and its landslides threaten the safety and stability of the Atsuma River basin. This study investigates land use and land cover (LULC) change by analyzing the 2015 and 2020 LULC maps of the basin, and its impact on runoff and sediment transport in the basin by using the soil and water assessment tool (SWAT) model to accurately simulate the runoff and sediment transport process. This study finds that the earthquake and landslide transformed nearly 10% of the forest into bare land in the basin. The simulation results showed that the runoff, which was simulated based on the 2020 LULC data, was slightly higher than that based on the 2015 LULC data, and the sediment transport after the earthquake is significantly higher than before. The rate of sediment transportation after the earthquake, adjusted according to the runoff, was about 3.42 times more than before. This shows that as the forest land decreased, the bare land increased. Conversely, the runoff increased slightly, whereas the sediment transport rate increased significantly in the Atsuma River basin after the earthquake. In future, active governance activities performed by humans can reduce the amount of sediment transport in the basin.

Author(s):  
K. Venkatesh ◽  
H. Ramesh

<p><strong>Abstract.</strong> Streamflow can be affected by a number of aspects related to land use and can vary promptly as those factors change. Urbanization, deforestation, mining, agricultural practices and economic growth are some of the factors related to these land use changes which alter the stream flow. In the present study, the impact of land use land cover change (LULC) on stream flow is studied by using SWAT model for Tungabhadra river basin, located in the state of Karnataka, India. Tungabhadra river originates in the Western Ghats of Karnataka and flows towards north-east and joins the river Krishna. The land use maps of 1993, 2003 and 2018 are used for assessing the stream flow changes with respect to LULC. Calibration and validation of the model for streamflow was carried out using the SUFI-2 algorithm in SWAT-CUP for the years 1983&amp;ndash;1993 and 1994&amp;ndash;2000 respectively. Statistical parameters namely Coefficient of Determination (R<sup>2</sup>) &amp;amp; Nash–Sutcliffe (N-S) were used to assess the efficiency and performance of the SWAT model. It was found that the observed and simulated streamflow values are closely matching, which in turn projects that the model results are acceptable. The calibrated model was used for simulation of future dynamic land use scenario to assess the impact on streamflow. The results can be used for conservation of water and soil management.</p>


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Dereje Gebrie Habte ◽  
Satishkumar Belliethathan ◽  
Tenalem Ayenew

AbstractEvaluation of land use/land cover (LULC) status of watersheds is vital to environmental management. This study was carried out in Jewha watershed, which is found in the upper Awash River basin of central Ethiopia. The total catchment area is 502 km2. All climatic zones of Ethiopia, including lowland arid (‘Kola’), midland semi-arid (‘Woinadega’), humid highland (Dega) and afro alpine (‘Wurch’) can be found in the watershed. The study focused on LULC classification and change detection using GIS and remote sensing techniques by analyzing satellite images. The data preprocessing and post-process was done using multi-temporal spectral satellite data. The images were used to evaluate the temporal trends of the LULC class by considering the years 1984, 1995, 2005 and 2015. Accuracy assessment and change detection of the classification were undertaken by accounting these four years images. The land use types in the study area were categorized into six classes: natural forest, plantation forest, cultivated land, shrub land, grass land and bare land. The result shows the cover classes which has high environmental role such as forest and shrub has decreased dramatically through time with cultivated land increasing during the same period in the watershed. The forest cover in 1984 was about 6.5% of the total catchment area, and it had decreased to 4.2% in 2015. In contrast, cultivated land increased from 38.7% in 1984 to 51% in 2015. Shrub land decreased from 28 to 18% in the same period. Bare land increased due to high gully formation in the catchment. In 1984, it was 1.8% which turned to 0.6% in 1995 then increased in 2015 to 2.7%. Plantation forest was not detected in 1984. In 1995, it covers 1.5% which turned to be the same in 2015. The study clearly demonstrated that there are significant changes of land use and land cover in the catchment. The findings will allow making informed decision which will allow better land use management and environmental conservation interventions.


2018 ◽  
Vol 10 (12) ◽  
pp. 1910 ◽  
Author(s):  
Joseph Spruce ◽  
John Bolten ◽  
Raghavan Srinivasan ◽  
Venkat Lakshmi

This paper discusses research methodology to develop Land Use Land Cover (LULC) maps for the Lower Mekong Basin (LMB) for basin planning, using both MODIS and Landsat satellite data. The 2010 MODIS MOD09 and MYD09 8-day reflectance data was processed into monthly NDVI maps with the Time Series Product Tool software package and then used to classify regionally common forest and agricultural LULC types. Dry season circa 2010 Landsat top of atmosphere reflectance mosaics were classified to map locally common LULC types. Unsupervised ISODATA clustering was used to derive most LULC classifications. MODIS and Landsat classifications were combined with GIS methods to derive final 250-m LULC maps for Sub-basins (SBs) 1–8 of the LMB. The SB 7 LULC map with 14 classes was assessed for accuracy. This assessment compared random locations for sampled types on the SB 7 LULC map to geospatial reference data such as Landsat RGBs, MODIS NDVI phenologic profiles, high resolution satellite data, and Mekong River Commission data (e.g., crop calendars). The SB 7 LULC map showed an overall agreement to reference data of ~81%. By grouping three deciduous forest classes into one, the overall agreement improved to ~87%. The project enabled updated regional LULC maps that included more detailed agriculture LULC types. LULC maps were supplied to project partners to improve use of Soil and Water Assessment Tool for modeling hydrology and water use, plus enhance LMB water and disaster management in a region vulnerable to flooding, droughts, and anthropogenic change as part of basin planning and assessment.


Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 916
Author(s):  
Urgessa Kenea ◽  
Dereje Adeba ◽  
Motuma Shiferaw Regasa ◽  
Michael Nones

Land use land cover (LULC) changes are highly pronounced in African countries, as they are characterized by an agriculture-based economy and a rapidly growing population. Understanding how land use/cover changes (LULCC) influence watershed hydrology will enable local governments and policymakers to formulate and implement effective and appropriate response strategies to minimize the undesirable effects of future land use/cover change or modification and sustain the local socio-economic situation. The hydrological response of the Ethiopia Fincha’a watershed to LULCC that happened during 25 years was investigated, comparing the situation in three reference years: 1994, 2004, and 2018. The information was derived from Landsat sensors, respectively Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI/TIRS. The various LULC classes were derived via ArcGIS using a supervised classification system, and the accuracy assessment was done using confusion matrixes. For all the years investigated, the overall accuracies and the kappa coefficients were higher than 80%, with 2018 as the more accurate year. The analysis of LULCC revealed that forest decreased by 20.0% between the years 1994–2004, and it decreased by 11.8% in the following period 2004–2018. Such decline in areas covered by forest is correlated to an expansion of cultivated land by 16.4% and 10.81%, respectively. After having evaluated the LULCC at the basin scale, the watershed was divided into 18 sub-watersheds, which contained 176 hydrologic response units (HRUs), having a specific LULC. Accounting for such a detailed subdivision of the Fincha’a watershed, the SWAT model was firstly calibrated and validated on past data, and then applied to infer information on the hydrological response of each HRU on LULCC. The modelling results pointed out a general increase of average water flow, both during dry and wet periods, as a consequence of a shift of land coverage from forest and grass towards settlements and build-up areas. The present analysis pointed out the need of accounting for past and future LULCC in modelling the hydrological responses of rivers at the watershed scale.


Sign in / Sign up

Export Citation Format

Share Document