Fluid-Structure Interaction Analysis of 3D Human Aortic Valve Model Constructed from CT Images

Author(s):  
Sakurako Miyazaki ◽  
Asuka Hatano ◽  
Satoshi Izumi ◽  
Yusuke Morishita ◽  
Bowen Fan ◽  
...  
2022 ◽  
Author(s):  
David Oks ◽  
Mariano Vazquez ◽  
Guillaume Houzeaux ◽  
Constantine Butakoff ◽  
Cristobal Samaniego

This work introduces the first 2-way fluid-structure interaction (FSI) computational model to study the effect of aortic annulus eccentricity on the performance and thrombogenic risk of cardiac bioprostheses. The model predicts that increasing eccentricities yield lower geometric orifice areas (GOAs) and higher normalized transvalvular pressure gradients (TPGs) for healthy cardiac outputs during systole, agreeing with in vitro experiments. Regions with peak values of residence time and shear rate are observed to grow with eccentricity in the sinus of Valsalva, indicating an elevated risk of thrombus formation for eccentric configurations. In addition, the computational model is used to analyze the effect of varying leaflet rigidity on both performance, thrombogenic and calcification risks with applications to tissue-engineered prostheses, observing an increase in systolic and diastolic TPGs, and decrease in systolic GOA, which translates to decreased valve performance for more rigid leaflets. An increased thrombogenic risk is detected for the most rigid valves. Peak solid stresses are also analyzed, and observed to increase with rigidity, elevating risk of valve calcification and structural failure. The immersed FSI method was implemented in a high-performance computing multi-physics simulation software, and validated against a well known FSI benchmark. The aortic valve bioprosthesis model is qualitatively contrasted against experimental data, showing good agreement in closed and open states. To the authors' knowledge this is the first computational FSI model to study the effect of eccentricity or leaflet rigidity on thrombogenic biomarkers, providing a novel tool to aid device manufacturers and clinical practitioners.


Prosthesis ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 65-75 ◽  
Author(s):  
Milan Toma ◽  
Daniel R. Einstein ◽  
Charles H. Bloodworth ◽  
Keshav Kohli ◽  
Richard P. Cochran ◽  
...  

Mitral regurgitation imposes a significant symptomatic burden on patients who are not candidates for conventional surgery. For these patients, transcatheter repair and replacement devices are emerging as alternative options. One such device is an intravalvular balloon or spacer that is inserted between the mitral valve leaflets to fill the gap that gives rise to mitral regurgitation. In this study, we apply a large-deformation fluid-structure interaction analysis to a fully 3D subject-specific mitral valve model to assess the efficacy of the intra-valvular spacer for reducing mitral regurgitation severity. The model includes a topologically 3D subvalvular apparatus with unprecedented detail. Results show that device fixation and anchoring at the location of the subject’s regurgitant orifice is imperative for optimal reduction of mitral regurgitation.


2015 ◽  
Vol 44 (4) ◽  
pp. 942-953 ◽  
Author(s):  
Milan Toma ◽  
Morten Ø. Jensen ◽  
Daniel R. Einstein ◽  
Ajit P. Yoganathan ◽  
Richard P. Cochran ◽  
...  

Perfusion ◽  
2021 ◽  
pp. 026765912199854
Author(s):  
Mohammad Javad Ghasemi Pour ◽  
Kamran Hassani ◽  
Morteza Khayat ◽  
Shahram Etemadi Haghighi

Background and objectives: Fluid structure interaction (FSI) is defined as interaction of the structures with contacting fluids. The aortic valve experiences the interaction with blood flow in systolic phase. In this study, we have tried to predict the hemodynamics of blood flow through a normal and stenotic aortic valve in two relaxation and exercise conditions using a three-dimensional FSI method. Methods: The aorta valve was modeled as a three-dimensional geometry including a normal model and two others with 25% and 50% stenosis. The geometry of the aortic valve was extracted from CT images and the models were generated by MMIMCS software and then they were implemented in ANSYS software. The pulsatile flow rate was used for all cases and the numerical simulations were conducted based on a time-dependent domain. Results: The obtained results including the velocity, pressure, and shear stress contours in different systolic time sequences were explained and discussed. The maximum blood flow velocity in relaxation phase was obtained 1.62 m/s (normal valve), 3.78 m/s (25% stenosed valve), and 4.73 m/s (50% stenosed valve). In exercise condition, the maximum velocities are 2.86, 4.32, and 5.42 m/s respectively. The maximum blood pressure in relaxation phase was calculated 111.45 mmHg (normal), 148.66 mmHg (25% stenosed), and 164.21 mmHg (50% stenosed). However, the calculated values in exercise situation were 129.57, 163.58, and 191.26 mmHg. The validation of the predicted results was also conducted using existing literature. Conclusions: We believe that such model are useful tools for biomechanical experts. The further studies should be done using experimental data and the data are implemented on the boundary conditions for better comparison of the results.


Sign in / Sign up

Export Citation Format

Share Document