scholarly journals Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid–structure interaction analysis

2020 ◽  
Vol 19 (5) ◽  
pp. 1725-1740 ◽  
Author(s):  
Ram P. Ghosh ◽  
Gil Marom ◽  
Matteo Bianchi ◽  
Karl D’souza ◽  
Wojtek Zietak ◽  
...  
2003 ◽  
Vol 36 (5) ◽  
pp. 699-712 ◽  
Author(s):  
J. De Hart ◽  
F.P.T. Baaijens ◽  
G.W.M. Peters ◽  
P.J.G. Schreurs

2022 ◽  
Author(s):  
David Oks ◽  
Mariano Vazquez ◽  
Guillaume Houzeaux ◽  
Constantine Butakoff ◽  
Cristobal Samaniego

This work introduces the first 2-way fluid-structure interaction (FSI) computational model to study the effect of aortic annulus eccentricity on the performance and thrombogenic risk of cardiac bioprostheses. The model predicts that increasing eccentricities yield lower geometric orifice areas (GOAs) and higher normalized transvalvular pressure gradients (TPGs) for healthy cardiac outputs during systole, agreeing with in vitro experiments. Regions with peak values of residence time and shear rate are observed to grow with eccentricity in the sinus of Valsalva, indicating an elevated risk of thrombus formation for eccentric configurations. In addition, the computational model is used to analyze the effect of varying leaflet rigidity on both performance, thrombogenic and calcification risks with applications to tissue-engineered prostheses, observing an increase in systolic and diastolic TPGs, and decrease in systolic GOA, which translates to decreased valve performance for more rigid leaflets. An increased thrombogenic risk is detected for the most rigid valves. Peak solid stresses are also analyzed, and observed to increase with rigidity, elevating risk of valve calcification and structural failure. The immersed FSI method was implemented in a high-performance computing multi-physics simulation software, and validated against a well known FSI benchmark. The aortic valve bioprosthesis model is qualitatively contrasted against experimental data, showing good agreement in closed and open states. To the authors' knowledge this is the first computational FSI model to study the effect of eccentricity or leaflet rigidity on thrombogenic biomarkers, providing a novel tool to aid device manufacturers and clinical practitioners.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Adi A. Basri ◽  
Mohammad Zuber ◽  
Ernnie I. Basri ◽  
Muhammad S. Zakaria ◽  
Ahmad F. A. Aziz ◽  
...  

This study investigated the impact of paravalvular leakage (PVL) in relation to the different valve openings of the transcatheter aortic valve implantation (TAVI) valve using the fluid structure interaction (FSI) approach. Limited studies were found on the subject of FSI with regards to TAVI-PVL condition, which involves both fluid and structural responses in coupling interaction. Hence, further FSI simulation with the two-way coupling method is implemented to investigate the effects of hemodynamics blood flow along the patient-specific aorta model subjected to the interrelationship between PVL and the different valve openings using the established FSI software ANSYS 16.1. A 3D patient-specific aorta model is constructed using MIMICS software. The TAVI valve identical to Edward SAPIEN XT 26 (Edwards Lifesciences, Irvine, California), at different Geometrical Orifice Areas (GOAs), is implanted into the patient’s aortic annulus. The leaflet opening of the TAVI valve is drawn according to severity of GOA opening represented in terms of 100%, 80%, 60%, and 40% opening, respectively. The result proved that the smallest percentage of GOA opening produced the highest possibility of PVL, increased the recirculatory flow proximally to the inner wall of the ascending aorta, and produced lower backflow velocity streamlines through the side area of PVL region. Overall, 40% GOA produced 89.17% increment of maximum velocity magnitude, 19.97% of pressure drop, 65.70% of maximum WSS magnitude, and a decrement of 33.62% total displacement magnitude with respect to the 100% GOA.


Sign in / Sign up

Export Citation Format

Share Document