scholarly journals Some New Properties of a Suitable Weak Solution to the Navier–Stokes Equations

Author(s):  
Francesca Crispo ◽  
Paolo Maremonti ◽  
Carlo Romano Grisanti

The Galerkin approximation to the Navier–Stokes equations in dimension N , where N is an infinite non-standard natural number, is shown to have standard part that is a weak solution. This construction is uniform with respect to non-standard representation of the initial data, and provides easy existence proofs for statistical solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Wen-Juan Wang ◽  
Yan Jia

We study the stability issue of the generalized 3D Navier-Stokes equations. It is shown that if the weak solutionuof the Navier-Stokes equations lies in the regular class∇u∈Lp(0,∞;Bq,∞0(ℝ3)),(2α/p)+(3/q)=2α,2<q<∞,0<α<1, then every weak solutionv(x,t)of the perturbed system converges asymptotically tou(x,t)asvt-utL2→0,t→∞.


Sign in / Sign up

Export Citation Format

Share Document