Molecular Photoionization and Photodetachment Cross Sections Based on L$$^2$$ Basis Sets: Theory and Selected Examples

Author(s):  
Bruno Nunes Cabral Tenorio ◽  
Sonia Coriani ◽  
Alexandre Braga Rocha ◽  
Marco Antonio Chaer Nascimento
1985 ◽  
Vol 32 (4) ◽  
pp. 2134-2141 ◽  
Author(s):  
Chin-hui Yu ◽  
Russell M. Pitzer ◽  
C. William McCurdy

1992 ◽  
Vol 70 (2) ◽  
pp. 513-519 ◽  
Author(s):  
Roberto Moccia ◽  
Pietro Spizzo

By using the K-matrix technique for the continuum states that was previously employed with particularly diffuse L2 basis sets, it is shown that GTO bases are also capable of yielding accurate values for the properties belonging to the electronic continuum. The method has been tested for helium and proved of satisfactory accuracy also for the analysis of the autoionizing states. The results include the phase shifts of the continuum states of the 1Seand 1P° manifolds, the properties of the lowest resonances of these symmetries, the ground state photoionization cross section, and the S contribution to the 1s2p1P° photoionization cross section. The results obtained suggest that the proposed technique should be useful for computing molecular differential photoionization cross sections by exploiting the widely used codes that employ GTO bases. Keywords: photoionization, Gaussian basis sets, helium, autoionizing states.


2020 ◽  
Vol 365 (12) ◽  
Author(s):  
E. Sahnoun ◽  
M. Ben Khalifa ◽  
F. Khadri ◽  
K. Hammami

AbstractDespite that the tricarbon monosulfide (C3S) is among the first sulfur-containing carbon-chain molecules to be detected in the interstellar medium, no studies focused on the determination of its collisional rates. These rate coefficients are essential to estimate the abundance of C3S in the interstellar medium. Computations of the C3S($^{1}\Sigma^{+}$ Σ + 1 ) downward rate coefficients, induced by collision with He, are performed by averaging the integral cross sections at low temperature (below $25~\text{K}$ 25 K ). Calculations of the cross sections in the close-coupling quantum time independent formalism for $E_{c}\leq110~\text{cm}^{-1}$ E c ≤ 110 cm − 1 and $J\leq10$ J ≤ 10 are based on a new 2-D potential energy surface. This PES is obtained from the explicit correlated coupled cluster with a single, double and perturbative triple excitation [ccsd(t)-f12] ab initio approach and the aug-cc-pVTZ basis sets. The PES have a global minimum of $-55.69~\text{cm}^{-1}$ − 55.69 cm − 1 located at $R=6.25$ R = 6.25 bohr and $\theta=94^{\circ}$ θ = 94 ∘ , and a second minimum of $-36.95~\text{cm}^{-1}$ − 36.95 cm − 1 at $R=9.35$ R = 9.35 bohr and $\theta=0^{\circ}$ θ = 0 ∘ . A comparison of C3S rates with those of the isoelectronic molecule C3O was made. The results indicate a great temperature dependence of the rates for transitions of $\Delta J>2$ Δ J > 2 . We expect that the new collisional data will allow for accurate determination of the C3S abundance in several interstellar regions.


Sign in / Sign up

Export Citation Format

Share Document