Mechatronics Systems Modelling Challenges and Threats

Author(s):  
Paweł Bachorz
Keyword(s):  
2016 ◽  
Author(s):  
Marc A. Rosen Rosen ◽  
Seama Koohi-Fayegh Koohi-Fayegh

1996 ◽  
Vol 34 (5-6) ◽  
pp. 67-74 ◽  
Author(s):  
D. Orhon ◽  
S. Sözen ◽  
N. Artan

For single-sludge denitrification systems, modelling of anoxic reactors currently uses the kinetics of aerobic heterotrophic growth together with a correction factor for anoxic conditions. This coefficient is computed on the basis of respirometric measurements with the assumption that the heterotrophic yield remains the same under aerobic and anoxic coditions. The paper provides the conceptual proof that the yield coefficient is significantly lower for the anoxic growth on the basis of the energetics of the related metabolic processes. This is used for the interpretation of the very high values for the correction factor experimentally determined for a number of industrial wastewaters. A default value for the anoxic heterotrophic yield coefficient is calculated for domestic sewage and compatible wastewaters and proposed for similar evaluations.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jo-An Occhipinti ◽  
Adam Skinner ◽  
Frank Iorfino ◽  
Kenny Lawson ◽  
Julie Sturgess ◽  
...  

Abstract Background Reducing suicidal behaviour (SB) is a critical public health issue globally. The complex interplay of social determinants, service system factors, population demographics, and behavioural dynamics makes it extraordinarily difficult for decision makers to determine the nature and balance of investments required to have the greatest impacts on SB. Real-world experimentation to establish the optimal targeting, timing, scale, frequency, and intensity of investments required across the determinants is unfeasible. Therefore, this study harnesses systems modelling and simulation to guide population-level decision making that represent best strategic allocation of limited resources. Methods Using a participatory approach, and informed by a range of national, state, and local datasets, a system dynamics model was developed, tested, and validated for a regional population catchment. The model incorporated defined pathways from social determinants of mental health to psychological distress, mental health care, and SB. Intervention scenarios were investigated to forecast their impact on SB over a 20-year period. Results A combination of social connectedness programs, technology-enabled coordinated care, post-attempt assertive aftercare, reductions in childhood adversity, and increasing youth employment projected the greatest impacts on SB, particularly in a youth population, reducing self-harm hospitalisations (suicide attempts) by 28.5% (95% interval 26.3–30.8%) and suicide deaths by 29.3% (95% interval 27.1–31.5%). Introducing additional interventions beyond the best performing suite of interventions produced only marginal improvement in population level impacts, highlighting that ‘more is not necessarily better.’ Conclusion Results indicate that targeted investments in addressing the social determinants and in mental health services provides the best opportunity to reduce SB and suicide. Systems modelling and simulation offers a robust approach to leveraging best available research, data, and expert knowledge in a way that helps decision makers respond to the unique characteristics and drivers of SB in their catchments and more effectively focus limited health resources.


2004 ◽  
Vol 42 (4) ◽  
pp. 413-425 ◽  
Author(s):  
Helena Ramos ◽  
Dídia Covas ◽  
Alexandre Borga ◽  
Dálla Loureiro

Sign in / Sign up

Export Citation Format

Share Document