Porous Medium Model: An Algebraic Perspective and the Fick’s Law

Author(s):  
Renato De Paula ◽  
Chiara Franceschini
1999 ◽  
Vol 2 (3) ◽  
pp. 263-275 ◽  
Author(s):  
Vladimir Koulich ◽  
Jose L. Lage ◽  
Connie C. W. Hsia ◽  
Robert L. Johnson, Jr.

2021 ◽  
Vol 181 ◽  
pp. 105950
Author(s):  
E. Moustapha Doumbia ◽  
David Janke ◽  
Qianying Yi ◽  
Thomas Amon ◽  
Martin Kriegel ◽  
...  

Author(s):  
Guihua Hu ◽  
Zhencheng Ye ◽  
Wenli Du ◽  
Feng Qian

Abstract Gas-solid coupled heat transfer in an industrial isothermal acetylene hydrogenation reactor was carried out using computational fluid dynamics (CFD). A two-temperature porous medium model was established by adding source terms to energy equations of the solid and gas phases. The combination of a genetic algorithm with CFD methods is applied to optimization of the kinetic and process parameters of the reaction. The model was validated by comparing the simulated results with those obtained from a one-temperature porous medium model, a two-temperature porous medium model, and industrial data. The optimal hydrogen-to-acetylene ratio and inlet temperature are 1.78 and 326K, respectively. The optimized ethylene yield increase and hydrogenation selectivity are 0.53 % and 0.18 % higher than the values before optimization, respectively. Finally, the effects of the hydrogen-to-acetylene ratio and inlet temperature on the increase in ethylene yield and hydrogenation selectivity are analyzed. Therefore, the hydrogen-to-acetylene ratio and inlet temperature should be reasonably controlled during production.


Sign in / Sign up

Export Citation Format

Share Document