Impact of pulsation rate and viscosity on taste perception – application of a porous medium model for human tongue surface

Author(s):  
Zhenxing Wu ◽  
Kai Zhao
2019 ◽  
Author(s):  
Zhenxing Wu ◽  
Kai Zhao

AbstractMost sensory systems are remarkable in their temporal precision, reflected in such phrases as “a flash of light” or “a twig snap”. Yet, the temporal response of human taste perception is complicated by the transport and diffusion processes of the stimuli through the papillae, saliva, taste pore, etc., to reach the taste receptors, processes that are poorly understood. In this study, we addressed this knowledge gap by modeling the transport and diffusion processes within the tongue surface through a novel micro-fiber porous medium approach and found that time-concentration profiles within the papilla zone rises with significant delay that well match experimental ratings of perceived taste intensity for both rapid stimuli pulses and longer sip-and-hold exposures. Diffusivity of taste stimuli, determined mostly by molecular size, correlates greatly with time and slope to reach peak intensity: smaller molecular size may lead to quicker taste perception. Our study demonstrates the novelty of modeling the human tongue as a porous material to drastically simplify computational approaches and that peripheral transport processes may significantly affect the temporal profile of taste perception.


1999 ◽  
Vol 2 (3) ◽  
pp. 263-275 ◽  
Author(s):  
Vladimir Koulich ◽  
Jose L. Lage ◽  
Connie C. W. Hsia ◽  
Robert L. Johnson, Jr.

2021 ◽  
Vol 181 ◽  
pp. 105950
Author(s):  
E. Moustapha Doumbia ◽  
David Janke ◽  
Qianying Yi ◽  
Thomas Amon ◽  
Martin Kriegel ◽  
...  

Author(s):  
Guihua Hu ◽  
Zhencheng Ye ◽  
Wenli Du ◽  
Feng Qian

Abstract Gas-solid coupled heat transfer in an industrial isothermal acetylene hydrogenation reactor was carried out using computational fluid dynamics (CFD). A two-temperature porous medium model was established by adding source terms to energy equations of the solid and gas phases. The combination of a genetic algorithm with CFD methods is applied to optimization of the kinetic and process parameters of the reaction. The model was validated by comparing the simulated results with those obtained from a one-temperature porous medium model, a two-temperature porous medium model, and industrial data. The optimal hydrogen-to-acetylene ratio and inlet temperature are 1.78 and 326K, respectively. The optimized ethylene yield increase and hydrogenation selectivity are 0.53 % and 0.18 % higher than the values before optimization, respectively. Finally, the effects of the hydrogen-to-acetylene ratio and inlet temperature on the increase in ethylene yield and hydrogenation selectivity are analyzed. Therefore, the hydrogen-to-acetylene ratio and inlet temperature should be reasonably controlled during production.


Sign in / Sign up

Export Citation Format

Share Document