Spatio-Temporal Deepfake Detection with Deep Neural Networks

Author(s):  
Andrey Sebyakin ◽  
Vladimir Soloviev ◽  
Anatoly Zolotaryuk
2019 ◽  
Author(s):  
David Beniaguev ◽  
Idan Segev ◽  
Michael London

AbstractWe introduce a novel approach to study neurons as sophisticated I/O information processing units by utilizing recent advances in the field of machine learning. We trained deep neural networks (DNNs) to mimic the I/O behavior of a detailed nonlinear model of a layer 5 cortical pyramidal cell, receiving rich spatio-temporal patterns of input synapse activations. A Temporally Convolutional DNN (TCN) with seven layers was required to accurately, and very efficiently, capture the I/O of this neuron at the millisecond resolution. This complexity primarily arises from local NMDA-based nonlinear dendritic conductances. The weight matrices of the DNN provide new insights into the I/O function of cortical pyramidal neurons, and the approach presented can provide a systematic characterization of the functional complexity of different neuron types. Our results demonstrate that cortical neurons can be conceptualized as multi-layered “deep” processing units, implying that the cortical networks they form have a non-classical architecture and are potentially more computationally powerful than previously assumed.


Author(s):  
Chi Qiao ◽  
Andrew T. Myers

Abstract Surrogate modeling of the variability of metocean conditions in space and in time during hurricanes is a crucial task for risk analysis on offshore structures such as offshore wind turbines, which are deployed over a large area. This task is challenging because of the complex nature of the meteorology-metocean interaction in addition to the time-dependence and high-dimensionality of the output. In this paper, spatio-temporal characteristics of surrogate models, such as Deep Neural Networks, are analyzed based on an offshore multi-hazard database created by the authors. The focus of this paper is two-fold: first, the effectiveness of dimension reduction techniques for representing high-dimensional output distributed in space is investigated and, second, an overall approach to estimate spatio-temporal characteristics of hurricane hazards using Deep Neural Networks is presented. The popular dimension reduction technique, Principal Component Analysis, is shown to perform similarly compared to a simpler dimension reduction approach and to not perform as well as a surrogate model implemented without dimension reduction. Discussions are provided to explain why the performance of Principal Component Analysis is only mediocre in this implementation and why dimension reduction might not be necessary.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 17913-17922 ◽  
Author(s):  
Lei Wang ◽  
Yangyang Xu ◽  
Jun Cheng ◽  
Haiying Xia ◽  
Jianqin Yin ◽  
...  

2020 ◽  
pp. 1-1
Author(s):  
Biruk B. Seyoum ◽  
Marco Pagani ◽  
Alessandro Biondi ◽  
Sara Balleri ◽  
Giorgio Buttazzo

Sign in / Sign up

Export Citation Format

Share Document