Volume 6B: Ocean Engineering
Latest Publications


TOTAL DOCUMENTS

75
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791884386

Author(s):  
Hongwei Wang ◽  
Zizhao Zhang ◽  
Gang Ma ◽  
Rongtai Ma ◽  
Jie Yang

Abstract Select the common mooring system-soft yoke mooring system as the research object. The soft yoke mooring system is regarded as a structure composed of multiple rigid bodies, and the theoretical analysis of multi-body dynamics is used to discuss the interaction of multi-rigid bodies. The classical HYSY113 FPSO is selected as an example, for the soft yoke mooring system, the stiffness characteristics and static restoring force curved compared with those of software OrcaFlex, and they are in good agreement, which verify the reliability of the formula derived, and it is a prerequisite for the accurate simulations in further steps. Coupled analysis to the whole system in time domain is also carried out both in OrcaFlex and AQWA, and the representative response of the FPSO under different environmental conditions is compared, the results are consistent well with each other. It is a good reference for the future study in this field. Good static characteristics are a prerequisite for accurate analysis of time-domain motion. By comparing the results in the time domain, it is found that under the same working conditions, the analysis results calculated by different commercial software (AQWA and OrcaFlex) may be different. We need to perform design analysis based on the characteristics of the software.



Author(s):  
Meng Ji ◽  
Ke Chen ◽  
Yunxiang You ◽  
Ruirui Zhang

Abstract Although ocean structures are complex, they all can be disassembled into a number of simple-shaped parts. One common shape is the slender body mentioned in this paper, and we focus on studying the mechanism of this shape. Experiments were carried out to study features of wave loads exerted by internal solitary waves (ISWs) on a submerged slender body. ISWs were generated by a piston-type wave maker in a large-type density stratified two-layer fluid wave flume. Using a three-component force transducer, the force variation of three degree of freedom (DOF) on the model was recorded. A satisfactory prediction method is established for ISWs on a submerged slender body based on internal solitary wave theory, Morison equation and pressure integral. Calculations based on this new prediction method are in good agreement with the experimental results. The experimental results and calculations show that, different incident angles, wave amplitude and layer thickness ratio have great effects on the wave loads, especially transverse incident waves bring much more severely influence. Besides the forces increase linearly with the wave amplitude becoming larger, and the maximums of the horizontal forces increase with the layer thickness ratio increasing.



Author(s):  
Yuliang Zhao ◽  
Sheng Dong ◽  
Zihao Yang ◽  
Lance Manuel

Abstract To ensure acceptable operation and/or survival of floating structures in extreme conditions, nonlinear time-domain simulations are often used to predict the structural response at the design stage. An environmental contour (EC) is commonly employed to identify critical sea states that serve as input for numerical simulations to assess the safety and performance of marine structures. In many studies, marginal and conditional distributions are defined to construct bivariate joint probability distributions for variables such as significant wave height and zero-crossing period; then, environmental contours can be constructed using the inverse first-order reliability method (IFORM). This study adopts alternative models to describe the generalized dependence structure between the environmental variables using copulas; the Nataf transformation is also discussed as a special case. Environmental contours are constructed, making use of measured wave data from moored buoys. Derived design loads are applied on a semi-submersible platform to assess possible differences. In addition, the long-term extremes of the tension of the mooring lines are estimated, considering uncertainties in the structural response using a 3D model (that includes response variability, ignored with the EC approach) to help establish more accurate design loads using Monte Carlo simulation. Results offer a clear indication of the extreme response of the floating structure based on the different models.



Author(s):  
Ai-jun Li ◽  
Yong Liu

Abstract This article studies water wave diffraction and radiation by a submerged horizontal circular cylinder in front of a vertical wall under the assumption of linear potential flow theory. Based on the image principle, the hydrodynamic problem of a horizontal cylinder in front of a vertical wall is transformed into an equivalent problem involving symmetrical cylinders in a horizontally unbounded fluid domain. Then, analytical solutions for the present physical problem are developed using the method of multipole expansions combined with the shift of polar coordinate systems. The wave exciting forces on the cylinder as well as the added mass and radiation damping due to the cylinder oscillation are calculated. The analytical solutions converge very rapidly with the increasing truncated number of multipoles. Calculation examples are presented to examine the effects of different parameters on the hydrodynamic quantities of the cylinder. Results indicate that the hydrodynamic quantities of the cylinder in front of a vertical wall greatly differ from those in a horizontally unbounded fluid domain.



Author(s):  
Áureo I. W. Ramos ◽  
Antonio C. Fernandes ◽  
Vanessa M. Thomaz

Abstract A wave flume is primarily intended to reproduce actual sea conditions in order to provide a reliable means of testing for small scale models. The realization of scaled tests is extremely important for the validation of a project in real scale, since, through the laws of similitude, such tests make it possible to predict the behavior of structures in the ocean as well as their performance during operation. This research aims to develop, test and validate an active control algorithm for wave absorption in a 2D wave channel — that is, when the waves propagate in only one direction — based on artificial neural networks (ANN). The ANN control algorithm relies on the linear wave theory and the principle of time reversal of wave propagation, i.e. the phenomenon of wave absorption corresponds to the wave generation when observed in the reverse direction of time. Through this principle, data from wave generation experiments, after proper manipulation, are used to train an ANN capable of generating the control signal used to move the wave generator device, this time as a wave absorber.



Author(s):  
Michael Odzer ◽  
Kristina Francke

Abstract The sound of waves breaking on shore, or against an obstruction or jetty, is an immediately recognizable sound pattern which could potentially be employed by a sensor system to identify obstructions. If frequency patterns produced by breaking waves can be reproduced and mapped in a laboratory setting, a foundational understanding of the physics behind this process could be established, which could then be employed in sensor development for navigation. This study explores whether wave-breaking frequencies correlate with the physics behind the collapsing of the wave, and whether frequencies of breaking waves recorded in a laboratory tank will follow the same pattern as frequencies produced by ocean waves breaking on a beach. An artificial “beach” was engineered to replicate breaking waves inside a laboratory wave tank. Video and audio recordings of waves breaking in the tank were obtained, and audio of ocean waves breaking on the shoreline was recorded. The audio data was analysed in frequency charts. The video data was evaluated to correlate bubble sizes to frequencies produced by the waves. The results supported the hypothesis that frequencies produced by breaking waves in the wave tank followed the same pattern as those produced by ocean waves. Analysis utilizing a solution to the Rayleigh-Plesset equation showed that the bubble sizes produced by breaking waves were inversely related to the pattern of frequencies. This pattern can be reproduced in a controlled laboratory environment and extrapolated for use in developing navigational sensors for potential applications in marine navigation such as for use with autonomous ocean vehicles.



Author(s):  
Thomas B. Johannessen

Abstract The present paper is concerned with the accurate prediction of nonlinear wave kinematics underneath measured time histories of surface elevation. It is desired to develop a method which is useful in analysis of offshore measurements close to wind turbine foundations. The method should therefore be robust in relatively shallow water and should be able to account for the presence of the foundation and the shortcrestedness of offshore seastates. The present method employs measurements of surface elevation time histories at one or a small number of locations and solves the associated velocity potential by minimizing the error in the free surface boundary conditions. The velocity potential satisfies exactly Laplace’s equation, the bed boundary condition and (optionally) the boundary condition on the wall of a uniform surface piercing column. This is achieved by associating one wavenumber with every wave frequency thereby sacrificing the possibility of following the nonlinear wave evolution but ensuring a good description of the wave properties locally. For shortcrested waves, the direction of wave component propagation is drawn from a known or assumed directional spectrum. No attempt is made to calculate the directional distribution of the wave field from the surface elevation measurements since this is usually not realistically possible with the available data. The method is set up for analysis with or without a uniform current, for shortcrested or longcrested waves and with or without a surface piercing column in the wave field. It has been compared with laboratory data for steep longcrested and shortcrested waves. The method is shown to be in good agreement with measurements. Since the method is based on a Fourier series of surface elevation, however, it cannot model overtopping breaking waves and associated wave impact loading. For problems where wave breaking is important, the method may serve as a screening analysis used to select wave events for detailed analysis using Computational Fluid Dynamics (CFD).



Author(s):  
Zhaoyu Qu ◽  
Ning Gan ◽  
Yingyu Chen ◽  
Nana Yang

Abstract For underwater vehicles with protrusions (external structure), the geometric shape of the protrusions is bound to affect the local flow field of the vehicles during the moving process of the vehicles, thus affecting the generation, development and collapse of cavitation around the vehicles. The cavitation may break, fall off and collapse randomly, and other local movements may affect the motion attitude of the underwater vehicle. It is an effective method to study fluid dynamics to simulate prototype cases with small scale models. In this paper, we mainly use the small scale model test method to explore the cavitation motion characteristics of the vehicle in water with protrusions. Through the establishment of a set of vehicle motion test equipment under reduced pressure, a series of experiments were conducted on this basis to explore the motion characteristics of vehicle cavitation under different bump shapes. In this study, two high-speed cameras were used to simultaneously record cavitation generation, development, collapse and other characteristics, to analyze the bubble generation mechanism and scale characteristics caused by the bulge, and then to study the influence of cavitation induced by the bulge on the motion attitude of the vehicle.



Author(s):  
Yingying Chen ◽  
Shanli Zhang ◽  
Wei Kean Chen ◽  
Allan Magee

Abstract Ship structures are subjected to various deteriorating mechanisms throughout their service life. Continuous awareness of the vessel’s structural health is a critical aspect of the overall situational awareness. Model tests are often used to validate software which predicts the vessels’ hydrodynamic loading and dynamic structural response. Generally, two different methods can be used to model the flexibility of the ship. The most common method is to sub-divide the hull into a number of rigid segments that are interconnected by a flexible backbone beam. The elasticity of the model is represented by the elastic beam to which rigid segments are connected. However, the segmented model limits the measurements to prescribed locations between segments. The other method is to fabricate the model using a continuous elastic material. In this paper, a new method for fabricating a fully elastic model is introduced as part of a structural health monitoring system. Since the model is built from continuous materials with known elastic properties, it can be instrumented to measure strain at a larger number of locations. A suitable material for construction of the elastic model has been identified. Material tests are conducted to better understand the static and dynamic behavior of the elastic material. The material shows linear stress-strain relationship and stable mechanical properties within the loading range. Due to the low elastic modulus of the material, the strain gauge stiffening effect is obvious and has been taken into account in the calibration process. Using the elastic material, a fully elastic model of the S175 midship section is designed. As a first step trial, the middle part of the model representing a three-cargo hold is manufactured. Static bending tests are conducted to examine the elastic characteristics of the fabricated model. Wave experiments are carried out. The results from these experiments are compared to numerical simulations.



Author(s):  
Yuhang He ◽  
Weijia Li ◽  
Yaozhong Wu ◽  
Jinbo Wu ◽  
Zhiyuan Cheng

Abstract Compared with traditional antenna platform with two axes, Stewart platform can search airspace with no tracking blind district. And the advantages of high accuracy, high stiffness and high load-weight ratio also make it be a better solution for antenna platforms. This paper designed a 6-DOF ship-borne antenna platform based on the Stewart platform to overcome the difficulties that to realize a large orientation workspace (azimuth range is from 0° to 360°, pitch range is from 0° to 100°) under the compact dimensions of parallel mechanisms. A novel joint structure has been proposed which can provide a larger rotation angle than common Hooke joints to realize the large orientation workspace without the inter-mechanism interference. In addition, this paper defined the concept of working height and working radius then proposed a trajectory based on that to obtain the complete pose (translation and orientation) of antenna platform by azimuth and pitch angles. After that, the particle swarm optimization algorithm is employed to seek the optimal geometrical design parameters. A prototype of the 6-DOF ship-borne antenna platform adopted the particle swarm optimization results has been constructed. And the results show that it not noly meets the design requirements, but also provides a good performance.



Sign in / Sign up

Export Citation Format

Share Document