Gene Expression Asymmetry in the Human Prefrontal Cortex

Author(s):  
Olga Efimova ◽  
Konstantin Pavlov ◽  
Mark Kachanovskiy ◽  
Asiya Ayupova ◽  
Yana Zorkina ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Yoshino ◽  
Bhaskar Roy ◽  
Nilesh Kumar ◽  
M. Shahid Mukhtar ◽  
Yogesh Dwivedi

AbstractDisrupted synaptic plasticity is the hallmark of major depressive disorder (MDD), with accompanying changes at the molecular and cellular levels. Often, the maladaptive molecular changes at the synapse are the result of global transcriptional reprogramming dictated by activity-dependent synaptic modulation. Thus far, no study has directly studied the transcriptome-wide expression changes locally at the synapse in MDD brain. Here, we have examined altered synaptic transcriptomics and their functional relevance in MDD with a focus on the dorsolateral prefrontal cortex (dlPFC). RNA was isolated from total fraction and purified synaptosomes of dlPFC from well-matched 15 non-psychiatric controls and 15 MDD subjects. Transcriptomic changes in synaptic and total fractions were detected by next-generation RNA-sequencing (NGS) and analyzed independently. The ratio of synaptic/total fraction was estimated to evaluate a shift in gene expression ratio in MDD subjects. Bioinformatics and network analyses were used to determine the biological relevance of transcriptomic changes in both total and synaptic fractions based on gene–gene network, gene ontology (GO), and pathway prediction algorithms. A total of 14,005 genes were detected in total fraction. A total of 104 genes were differentially regulated (73 upregulated and 31 downregulated) in MDD group based on 1.3-fold change threshold and p < 0.05 criteria. In synaptosomes, out of 13,236 detectable genes, 234 were upregulated and 60 were downregulated (>1.3-fold, p < 0.05). Several of these altered genes were validated independently by a quantitative polymerase chain reaction (qPCR). GO revealed an association with immune system processes and cell death. Moreover, a cluster of genes belonged to the nervous system development, and psychological disorders were discovered using gene–gene network analysis. The ratio of synaptic/total fraction showed a shift in expression of 119 genes in MDD subjects, which were primarily associated with neuroinflammation, interleukin signaling, and cell death. Our results suggest not only large-scale gene expression changes in synaptosomes, but also a shift in the expression of genes from total to synaptic fractions of dlPFC of MDD subjects with their potential role in immunomodulation and cell death. Our findings provide new insights into the understanding of transcriptomic regulation at the synapse and their possible role in MDD pathogenesis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hui Li ◽  
Jing-An Chen ◽  
Qian-Zhi Ding ◽  
Guan-Yi Lu ◽  
Ning Wu ◽  
...  

Abstract Background Methamphetamine (METH) is one of the most widely abused illicit substances worldwide; unfortunately, its addiction mechanism remains unclear. Based on accumulating evidence, changes in gene expression and chromatin modifications might be related to the persistent effects of METH on the brain. In the present study, we took advantage of METH-induced behavioral sensitization as an animal model that reflects some aspects of drug addiction and examined the changes in gene expression and histone acetylation in the prefrontal cortex (PFC) of adult rats. Methods We conducted mRNA microarray and chromatin immunoprecipitation (ChIP) coupled to DNA microarray (ChIP-chip) analyses to screen and identify changes in transcript levels and histone acetylation patterns. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were performed to analyze the differentially expressed genes. We then further identified alterations in ANP32A (acidic leucine-rich nuclear phosphoprotein-32A) and POU3F2 (POU domain, class 3, transcription factor 2) using qPCR and ChIP-PCR assays. Results In the rat model of METH-induced behavioral sensitization, METH challenge caused 275 differentially expressed genes and a number of hyperacetylated genes (821 genes with H3 acetylation and 10 genes with H4 acetylation). Based on mRNA microarray and GO and KEGG enrichment analyses, 24 genes may be involved in METH-induced behavioral sensitization, and 7 genes were confirmed using qPCR. We further examined the alterations in the levels of the ANP32A and POU3F2 transcripts and histone acetylation at different periods of METH-induced behavioral sensitization. H4 hyperacetylation contributed to the increased levels of ANP32A mRNA and H3/H4 hyperacetylation contributed to the increased levels of POU3F2 mRNA induced by METH challenge-induced behavioral sensitization, but not by acute METH exposure. Conclusions The present results revealed alterations in transcription and histone acetylation in the rat PFC by METH exposure and provided evidence that modifications of histone acetylation contributed to the alterations in gene expression caused by METH-induced behavioral sensitization.


Author(s):  
Kristen R. Maynard ◽  
Leonardo Collado-Torres ◽  
Lukas M. Weber ◽  
Cedric Uytingco ◽  
Brianna K. Barry ◽  
...  

2009 ◽  
Vol 2 (1) ◽  
Author(s):  
Laura W Harris ◽  
Helen E Lockstone ◽  
Phillipp Khaitovich ◽  
Cynthia Shannon Weickert ◽  
Maree J Webster ◽  
...  

1995 ◽  
Vol 5 (6) ◽  
pp. 550-560 ◽  
Author(s):  
Schahram Akbarian ◽  
Molly M. Huntsman ◽  
James J. Kim ◽  
Alireza Tafazzoli ◽  
Steven G. Potkin ◽  
...  

2013 ◽  
Vol 124 (6) ◽  
pp. 770-781 ◽  
Author(s):  
Sau-Yeen Loke ◽  
Kazuhiro Tanaka ◽  
Wei-Yi Ong

2003 ◽  
Vol 60 (1) ◽  
pp. 71 ◽  
Author(s):  
T. Hashimoto ◽  
D.W. Volk ◽  
S.M. Eggan ◽  
J.N. Pierri ◽  
Z. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document