functional enrichment
Recently Published Documents


TOTAL DOCUMENTS

2050
(FIVE YEARS 1947)

H-INDEX

25
(FIVE YEARS 15)

2022 ◽  
Vol 11 ◽  
Author(s):  
Yuting Dong ◽  
Xiaozhao Liu ◽  
Bijun Jiang ◽  
Siting Wei ◽  
Bangde Xiang ◽  
...  

BackgroundThe alternative usage of promoters provides a way to regulate gene expression, has a significant influence on the transcriptome, and contributes to the cellular transformation of cancer. However, the function of alternative promoters (APs) in hepatocellular carcinoma (HCC) has not been systematically studied yet. In addition, the potential mechanism of regulation to the usage of APs remains unclear. DNA methylation, one of the most aberrant epigenetic modifications in cancers, is known to regulate transcriptional activity. Whether DNA methylation regulates the usage of APs needs to be explored. Here, we aim to investigate the effects of DNA methylation on usage of APs in HCC.MethodsPromoter activities were calculated based on RNA-seq data. Functional enrichment analysis was implemented to conduct GO terms. Correlation tests were used to detect the correlation between promoter activity and methylation status. The LASSO regression model was used to generate a diagnostic model. Kaplan–Meier analysis was used to compare the overall survival between high and low methylation groups. RNA-seq and whole-genome bisulfite sequencing (WGBS) in HCC samples were performed to validate the correlation of promoter activity and methylation.ResultsWe identified 855 APs in total, which could be well used to distinguish cancer from normal samples. The correlation of promoter activity and DNA methylation in APs was observed, and the APs with negative correlation were defined as methylation-regulated APs (mrAPs). Six mrAPs were identified to generate a diagnostic model with good performance (AUC = 0.97). Notably, the majority of mrAPs had CpG sites that could be used to predict clinical outcomes by methylation status. Finally, we verified 85.6% of promoter activity variation and 92.3% of methylation changes in our paired RNA-seq and WGBS samples, respectively. The negative correlation between promoter activity and methylation status was further confirmed in our HCC samples.ConclusionThe aberrant methylation status plays a critical role in the precision usage of APs in HCC, which sheds light on the mechanism of cancer development and provides a new insight into cancer screening and treatment.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Song ◽  
Shufang Tian ◽  
Ping Zhang ◽  
Nan Zhang ◽  
Yan Shen ◽  
...  

Acute myeloid leukemia (AML) is a clonal malignant proliferative blood disorder with a poor prognosis. Ferroptosis, a novel form of programmed cell death, holds great promise for oncology treatment, and has been demonstrated to interfere with the development of various diseases. A range of genes are involved in regulating ferroptosis and can serve as markers of it. Nevertheless, the prognostic significance of these genes in AML remains poorly understood. Transcriptomic and clinical data for AML patients were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Univariate Cox analysis was performed to identify ferroptosis-related genes with prognostic value, and the least absolute shrinkage and selection operator (LASSO) algorithm and stepwise multivariate Cox regression analysis were utilized to optimize gene selection from the TCGA cohort (132 samples) for model construction. Tumor samples from the GEO database (136 samples and 104 samples) were used as validation groups to estimate the predictive performance of the risk model. Finally, an eight-gene prognostic signature (including CHAC1, CISD1, DPP4, GPX4, AIFM2, SQLE, PGD, and ACSF2) was identified for the prediction of survival probability and was used to stratify AML patients into high- and low-risk groups. Survival analysis illustrated significantly prolonged overall survival and lower mortality in the low-risk group. The area under the receiver operating characteristic curve demonstrated good results for the training set (1-year: 0.846, 2-years: 0.826, and 3-years: 0.837), which verified the accuracy of the model for predicting patient survival. Independent prognostic analysis indicated that the model could be used as a prognostic factor (p ≤ 0.001). Functional enrichment analyses revealed underlying mechanisms and notable differences in the immune status of the two risk groups. In brief, we conducted and validated a novel ferroptosis-related prognostic model for outcome prediction and risk stratification in AML, with great potential to guide individualized treatment strategies in the future.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jihua Yang ◽  
XiaoHong Wei ◽  
Fang Hu ◽  
Wei Dong ◽  
Liao Sun

Abstract Background Molecular markers play an important role in predicting clinical outcomes in pancreatic adenocarcinoma (PAAD) patients. Analysis of the ferroptosis-related genes may provide novel potential targets for the prognosis and treatment of PAAD. Methods RNA-sequence and clinical data of PAAD was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) public databases. The PAAD samples were clustered by a non-negative matrix factorization (NMF) algorithm. The differentially expressed genes (DEGs) between different subtypes were used by “limma_3.42.2” package. The R software package clusterProfiler was used for functional enrichment analysis. Then, a multivariate Cox proportional and LASSO regression were used to develop a ferroptosis-related gene signature for pancreatic adenocarcinoma. A nomogram and corrected curves were constructed. Finally, the expression and function of these signature genes were explored by qRT-PCR, immunohistochemistry (IHC) and proliferation, migration and invasion assays. Results The 173 samples were divided into 3 categories (C1, C2, and C3) and a 3-gene signature model (ALOX5, ALOX12, and CISD1) was constructed. The prognostic model showed good independent prognostic ability in PAAD. In the GSE62452 external validation set, the molecular model also showed good risk prediction. KM-curve analysis showed that there were significant differences between the high and low-risk groups, samples with a high-risk score had a worse prognosis. The predictive efficiency of the 3-gene signature-based nomogram was significantly better than that of traditional clinical features. For comparison with other models, that our model, with a reasonable number of genes, yields a more effective result. The results obtained with qPCR and IHC assays showed that ALOX5 was highly expressed, whether ALOX12 and CISD1 were expressed at low levels in tissue samples. Finally, function assays results suggested that ALOX5 may be an oncogene and ALOX12 and CISD1 may be tumor suppressor genes. Conclusions We present a novel prognostic molecular model for PAAD based on ferroptosis-related genes, which serves as a potentially effective tool for prognostic differentiation in pancreatic cancer patients.


2022 ◽  
Author(s):  
Hanxiang Chen ◽  
Yongqing Li ◽  
Shaoming Zhang ◽  
Yunshan Wang ◽  
Lili Wang ◽  
...  

Abstract Background As one of the most common cancer among women worldwide, the prognosis of patients with advanced cervical cancer remains unsatisfactory. A study indicated that transmembrane protein 33 (TMEM33) was implicated in tumor recurrence, while its role in cervical cancer has not been elucidated. Methods TMEM33 expression in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) was primarily screened in The Cancer Genome Altas (TCGA), and further validated in Gene Expression Omnibus (GEO) database. The Kaplan–Meier plotter analysis and Cox regression were constructed to evaluate the prognostic value of TMEM33 in CESC. Functional enrichment analysis was performed with GO, KEGG and GSEA tools. Protein-protein interaction analysis and correlated gene networks were conducted using STING and GEPIA2 websites, respectively. The expression of TMEM33 in cervical cancer cells were examined by immunoblotting and RT-qPCR. Finally, CCK-8 assay and colony formation assay were performed to investigate the role of TMEM33 in cervical cancer cell proliferation. Results TMEM33 expression was significantly elevated in CESC compared with normal tissues. High expression of TMEM33 was associated with poor prognostic clinical characteristics in CESC patients. KM-plotter analysis revealed that patients with increased TMEM33 had shorter overall survival (OS), progress free interval (PFI), and disease specific survival (DSS). Moreover, Multivariate Cox analysis further confirmed that high TMEM33 expression was an independent risk factor for OS in patients with CESC. TMEM33 was associated with immune cell infiltration, and its expression was correlated with tumorigenesis-related genes RNF4, OCIAD1, TMED5, DHX15, MED28 and LETM1. More importantly, knockdown of TMEM33 in cervical cancer cells decreased the expression of those genes and inhibited cell proliferation. Conclusions Increased TMEM33 in cervical cancer can serve as an independent prognostic marker and might play a role in tumorigenesis by promoting cell proliferation.


2022 ◽  
Author(s):  
Vipavee Niemsiri ◽  
Sarah Brin Rosenthal ◽  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Maria C. Marchetto ◽  
...  

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric=1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.


2022 ◽  
pp. 1-12
Author(s):  
Zhengfei Ma ◽  
Ping Zhong ◽  
Peidong Yue ◽  
Zhongwu Sun

<b><i>Background:</i></b> Intracranial aneurysm (IA) is a serious cerebrovascular disease. The identification of key regulatory genes can provide research directions for early diagnosis and treatment of IA. <b><i>Methods:</i></b> Initially, the miRNA and mRNA data were downloaded from the Gene Expression Omnibus database. Subsequently, the limma package in R was used to screen for differentially expressed genes. In order to investigate the function of the differentially expressed genes, a functional enrichment analysis was performed. Moreover, weighted gene co-expression network analysis (WGCNA) was performed to identify the hub module and hub miRNAs. The correlations between miRNAs and mRNAs were assessed by constructing miRNA-mRNA regulatory networks. In addition, in vitro validation was performed. Finally, diagnostic analysis and electronic expression verification were performed on the GSE122897 dataset. <b><i>Results:</i></b> In the present study, 955 differentially expressed mRNAs (DEmRNAs, 480 with increased and 475 with decreased expression) and 46 differentially expressed miRNAs (DEmiRNAs, 36 with increased and 10 with decreased expression) were identified. WGCNA demonstrated that the yellow module was the hub module. Moreover, 16 hub miRNAs were identified. A total of 1,124 negatively regulated miRNA-mRNA relationship pairs were identified. Functional analysis demonstrated that DEmRNAs in the targeted network were enriched in vascular smooth muscle contraction and focal adhesion pathways. In addition, the area under the curve of 16 hub miRNAs was &#x3e;0.8. It is implied that 16 hub miRNAs may be used as potential diagnostic biomarkers of IA. <b><i>Conclusion:</i></b> Hub miRNAs and key signaling pathways were identified by bioinformatics analysis. This evidence lays the foundation for understanding the underlying molecular mechanisms of IA and provided potential therapeutic targets for the treatment of this disease.


2022 ◽  
Author(s):  
XiaoQiang Xu ◽  
Xin Jin ◽  
JiaXi Wang ◽  
Rui Sun ◽  
Meng Zhang ◽  
...  

Abstract Background: TSC22D domain family genes, including Tsc22d1-4, have been extensively reported to be involved in tumors. However, their expression profiles and prognostic significance in acute myeloid leukemia (AML) remain unknown. Methods: The present study investigated the expression profiles and prognostic significance of TSC22D domain family genes in AML through the use of multiple online databases, including the CCLE, EMBL-EBI, HPA, Oncomine,GEPIA2, UALCAN, BloodSpot, and GSCALite databases. The cBioPortal and GSCALite databases were used to explore the genetic alteration and copy number variation (CNV) of the Tsc22d3 gene. The TRRUST (Version 2) database was used to explore the gene ontology biological process, disease ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with the Tsc22d3 gene. The AnimalTFDB3.0, STRING, and Harmonizome databases were used to investigate the protein–protein interaction (PPI) network of the Tsc22d3 gene. The Harmonizome database was used for Tsc22d3 gene regulatory kinase analysis. The TargetScanHuman 7.2, MiRDB, and ENCORI databases were used to execute the analysis of the Tsc22d3 gene regulatory miRNAs. Then, the GSCALite and GEPIA2021 databases were used to investigate the correlation between Tsc22d3 expression and immune infiltration. Results: The expression of the Tsc22d3 gene was upregulated markedly in AML cells relative to normal hematopoietic stem cells. The expression of the Tsc22d3 gene was increased in AML tumor samples compared with healthy bone marrow samples. And overexpression of the Tsc22d3 gene was associated with poor OS in AML patients.This study implied that the Tsc22d3 gene is a new biomarker for predicting the prognosis of AML. Furthermore, gene ontology analysis showed that Tsc22d3 was involved in leukemia. Functional enrichment analysis showed that the Tsc22d3 gene has many biological functions, including the regulation of many genes, kinases, miRNAs, signaling pathways, and immune infiltration.Therefore, this study suggests that the Tsc22d3 gene may be a potential therapeutic target for AML. Conclusions: Tsc22d3 gene expression was upregulated in AML, and overexpression was associated with poor OS in AML patients. Therefore, the Tsc22d3 gene may serve as a novel prognostic biomarker and therapeutic target for AML.


2022 ◽  
Vol 12 ◽  
Author(s):  
Su Wang ◽  
Zhen Xie ◽  
Zenghong Wu

Background: Lung adenocarcinoma (LUAD) is the most common and lethal subtype of lung cancer. Ferroptosis, an iron-dependent form of regulated cell death, has emerged as a target in cancer therapy. However, the prognostic value of ferroptosis-related genes (FRGs)x in LUAD remains to be explored.Methods: In this study, we used RNA sequencing data and relevant clinical data from The Cancer Genome Atlas (TCGA) dataset and Gene Expression Omnibus (GEO) dataset to construct and validate a prognostic FRG signature for overall survival (OS) in LUAD patients and defined potential biomarkers for ferroptosis-related tumor therapy.Results: A total of 86 differentially expressed FRGs were identified from LUAD tumor tissues versus normal tissues, of which 15 FRGs were significantly associated with OS in the survival analysis. Through the LASSO Cox regression analysis, a prognostic signature including 11 FRGs was established to predict OS in the TCGA tumor cohort. Based on the median value of risk scores calculated according to the signature, patients were divided into high-risk and low-risk groups. Kaplan–Meier analysis indicated that the high-risk group had a poorer OS than the low-risk group. The area under the curve of this signature was 0.74 in the TCGA tumor set, showing good discrimination. In the GEO validation set, the prognostic signature also had good predictive performance. Functional enrichment analysis showed that some immune-associated gene sets were significantly differently enriched in two risk groups.Conclusion: Our study unearthed a novel ferroptosis-related gene signature for predicting the prognosis of LUAD, and the signature may provide useful prognostic biomarkers and potential treatment targets.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Riyu Chen ◽  
Zeyi Guan ◽  
Xianxing Zhong ◽  
Wenzheng Zhang ◽  
Ya Zhang

Objective. To explore the active compounds and targets of cinobufotalin (huachansu) compared with the osteosarcoma genes to obtain the potential therapeutic targets and pharmacological mechanisms of action of cinobufotalin on osteosarcoma through network pharmacology. Methods. The composition of cinobufotalin was searched by literature retrieval, and the target was selected from the CTD and TCMSP databases. The osteosarcoma genes, found from the GeneCards, OMIM, and other databases, were compared with the cinobufotalin targets to obtain potential therapeutic targets. The protein-protein interaction (PPI) network of potential therapeutic targets, constructed through the STRING database, was inputted into Cytoscape software to calculate the hub genes, using the NetworkAnalyzer. The hub genes were inputted into the Kaplan-Meier Plotter online database for exploring the survival curve. Functional enrichment analysis was identified using the DAVID database. Results. 28 main active compounds of cinobufotalin were explored, including bufalin, adenosine, oleic acid, and cinobufagin. 128 potential therapeutic targets on osteosarcoma are confirmed among 184 therapeutic targets form cinobufotalin. The hub genes included TP53, ACTB, AKT1, MYC, CASP3, JUN, TNF, VEGFA, HSP90AA1, and STAT3. Among the hub genes, TP53, ACTB, MYC, TNF, VEGFA, and STAT3 affect the patient survival prognosis of sarcoma. Through function enrichment analysis, it is found that the main mechanisms of cinobufotalin on osteosarcoma include promoting sarcoma apoptosis, regulating the cell cycle, and inhibiting proliferation and differentiation. Conclusion. The possible mechanisms of cinobufotalin against osteosarcoma are preliminarily predicted through network pharmacology, and further experiments are needed to prove these predictions.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yi-Li Zheng ◽  
Xuan Su ◽  
Yu-Meng Chen ◽  
Jia-Bao Guo ◽  
Ge Song ◽  
...  

Neuropathic pain (NP) is poorly managed, and in-depth mechanisms of gene transcriptome alterations in NP pathogenesis are not yet fully understood. To determine microRNA-related molecular mechanisms of NP and their transcriptional regulation in NP, PubMed, Embase, Web of Science and CINAHL Complete (EBSCO) were searched from inception to April 2021. Commonly dysregulated miRNAs in NP were assessed. The putative targets of these miRNAs were determined using TargetScan, Funrich, Cytoscape and String database. A total of 133 literatures containing miRNA profiles studies and experimentally verify studies were included. Venn analysis, target gene prediction analysis and functional enrichment analysis indicated several miRNAs (miR-200b-3p, miR-96, miR-182, miR-183, miR-30b, miR-155 and miR-145) and their target genes involved in known relevant pathways for NP. Targets on transient receptor potential channels, voltage-gated sodium channels and voltage-gated calcium channels may be harnessed for pain relief. A further delineation of signal processing and modulation in neuronal ensembles is key to achieving therapeutic success in future studies.


Sign in / Sign up

Export Citation Format

Share Document