Tree Leaves Detection Based on Deep Learning

Author(s):  
Lei Wang ◽  
Wei Qi Yan
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2077 ◽  
Author(s):  
Shih-Yu Chen ◽  
Chinsu Lin ◽  
Guan-Jie Li ◽  
Yu-Chun Hsu ◽  
Keng-Hao Liu

The life cycle of leaves, from sprout to senescence, is the phenomenon of regular changes such as budding, branching, leaf spreading, flowering, fruiting, leaf fall, and dormancy due to seasonal climate changes. It is the effect of temperature and moisture in the life cycle on physiological changes, so the detection of newly grown leaves (NGL) is helpful for the estimation of tree growth and even climate change. This study focused on the detection of NGL based on deep learning convolutional neural network (CNN) models with sparse enhancement (SE). As the NGL areas found in forest images have similar sparse characteristics, we used a sparse image to enhance the signal of the NGL. The difference between the NGL and the background could be further improved. We then proposed hybrid CNN models that combined U-net and SegNet features to perform image segmentation. As the NGL in the image were relatively small and tiny targets, in terms of data characteristics, they also belonged to the problem of imbalanced data. Therefore, this paper further proposed 3-Layer SegNet, 3-Layer U-SegNet, 2-Layer U-SegNet, and 2-Layer Conv-U-SegNet architectures to reduce the pooling degree of traditional semantic segmentation models, and used a loss function to increase the weight of the NGL. According to the experimental results, our proposed algorithms were indeed helpful for the image segmentation of NGL and could achieve better kappa results by 0.743.


Author(s):  
Stellan Ohlsson
Keyword(s):  

1877 ◽  
Vol 4 (80supp) ◽  
pp. 1278-1278
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


2020 ◽  
Author(s):  
B Böttcher ◽  
E Beller ◽  
A Busse ◽  
F Streckenbach ◽  
M Weber ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
L Pennig ◽  
L Lourenco Caldeira ◽  
C Hoyer ◽  
L Görtz ◽  
R Shahzad ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
A Heinrich ◽  
M Engler ◽  
D Dachoua ◽  
U Teichgräber ◽  
F Güttler
Keyword(s):  

2020 ◽  
Author(s):  
J Suykens ◽  
T Eelbode ◽  
J Daenen ◽  
P Suetens ◽  
F Maes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document