Privacy-Preserving Polynomial Evaluation over Spatio-Temporal Data on an Untrusted Cloud Server

Author(s):  
Wei Song ◽  
Mengfei Tang ◽  
Qiben Yan ◽  
Yuan Shen ◽  
Yang Cao ◽  
...  
Algorithms ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 182
Author(s):  
Elias Dritsas ◽  
Andreas Kanavos ◽  
Maria Trigka ◽  
Gerasimos Vonitsanos ◽  
Spyros Sioutas ◽  
...  

Privacy Preserving and Anonymity have gained significant concern from the big data perspective. We have the view that the forthcoming frameworks and theories will establish several solutions for privacy protection. The k-anonymity is considered a key solution that has been widely employed to prevent data re-identifcation and concerns us in the context of this work. Data modeling has also gained significant attention from the big data perspective. It is believed that the advancing distributed environments will provide users with several solutions for efficient spatio-temporal data management. GeoSpark will be utilized in the current work as it is a key solution that has been widely employed for spatial data. Specifically, it works on the top of Apache Spark, the main framework leveraged from the research community and organizations for big data transformation, processing and visualization. To this end, we focused on trajectory data representation so as to be applicable to the GeoSpark environment, and a GeoSpark-based approach is designed for the efficient management of real spatio-temporal data. Th next step is to gain deeper understanding of the data through the application of k nearest neighbor (k-NN) queries either using indexing methods or otherwise. The k-anonymity set computation, which is the main component for privacy preservation evaluation and the main issue of our previous works, is evaluated in the GeoSpark environment. More to the point, the focus here is on the time cost of k-anonymity set computation along with vulnerability measurement. The extracted results are presented into tables and figures for visual inspection.


2013 ◽  
Vol 23 (4) ◽  
pp. 609-625 ◽  
Author(s):  
A. Ercument Cicek ◽  
Mehmet Ercan Nergiz ◽  
Yucel Saygin

2019 ◽  
Vol 942 (12) ◽  
pp. 22-28
Author(s):  
A.V. Materuhin ◽  
V.V. Shakhov ◽  
O.D. Sokolova

Optimization of energy consumption in geosensor networks is a very important factor in ensuring stability, since geosensors used for environmental monitoring have limited possibilities for recharging batteries. The article is a concise presentation of the research results in the area of increasing the energy consumption efficiency for the process of collecting spatio-temporal data with wireless geosensor networks. It is shown that in the currently used configurations of geosensor networks there is a predominant direction of the transmitted traffic, which leads to the fact that through the routing nodes that are close to the sinks, a much more traffic passes than through other network nodes. Thus, an imbalance of energy consumption arises in the network, which leads to a decrease in the autonomous operation time of the entire wireless geosensor networks. It is proposed to use the possible mobility of sinks as an optimization resource. A mathematical model for the analysis of the lifetime of a wireless geosensor network using mobile sinks is proposed. The model is analyzed from the point of view of optimization energy consumption by sensors. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.


Author(s):  
Didier A. Vega-Oliveros ◽  
Moshé Cotacallapa ◽  
Leonardo N. Ferreira ◽  
Marcos G. Quiles ◽  
Liang Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document