Biological Nitrogen Fixation and Nitrogen Fixing Trees

2021 ◽  
pp. 413-443
Author(s):  
P. K. Ramachandran Nair ◽  
B. Mohan Kumar ◽  
Vimala D. Nair
1992 ◽  
Vol 338 (1286) ◽  
pp. 409-416 ◽  

Biological nitrogen fixation is fundamental to the economy of the biosphere, yet it is restricted to a few dozen bacterial species. Why have plants not acquired it during evolution? No serious physiological or genetic obstacles seem to exist. Has a relatively late emergence, among genomically flexible prokaryotes, effectively precluded appropriate seletion pressure?


2013 ◽  
Vol 26 (5) ◽  
pp. 486-494 ◽  
Author(s):  
José Olivares ◽  
Eulogio J. Bedmar ◽  
Juan Sanjuán

The intensive application of fertilizers during agricultural practices has led to an unprecedented perturbation of the nitrogen cycle, illustrated by the growing accumulation of nitrates in soils and waters and of nitrogen oxides in the atmosphere. Besides increasing use efficiency of current N fertilizers, priority should be given to value the process of biological nitrogen fixation (BNF) through more sustainable technologies that reduce the undesired effects of chemical N fertilization of agricultural crops. Wider legume adoption, supported by coordinated legume breeding and inoculation programs are approaches at hand. Also available are biofertilizers based on microbes that help to reduce the needs of N fertilization in important crops like cereals. Engineering the capacity to fix nitrogen in cereals, either by themselves or in symbiosis with nitrogen-fixing microbes, are attractive future options that, nevertheless, require more intensive and internationally coordinated research efforts. Although nitrogen-fixing plants may be less productive, at some point, agriculture must significantly reduce the use of warming (chemically synthesized) N and give priority to BNF if it is to sustain both food production and environmental health for a continuously growing human population.


Author(s):  
Ulrike Mathesius ◽  
◽  
Jian Jin ◽  
Yansheng Li ◽  
Michelle Watt ◽  
...  

Plant roots have evolved with the presence of rhizobacteria that can colonise the surface or interior of the plant. Some of these rhizobacteria are actively recruited by the plant and carry out particular functions, in particular in nutrient acquisition. Nitrogen-fixing bacteria form associations with many plant species, either as external associations or as symbiotic endophytes. The symbiosis between legumes and nitrogen-fixing rhizobia has been studied in most detail and is the most important contributor to nitrogen fixation in agriculture. This chapter highlights our current understanding of the molecular determinants of legume nodulation as well as challenges for improvements of biological nitrogen fixation in legumes and non-legumes. There is a need for connecting out knowledge of the molecular regulation of nodulation with field-based studies that take into account the interaction of nodulation with biotic and abiotic constraints. In addition, current approaches for engineering new symbioses are discussed.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Brett M. Barney ◽  
Mary H. Plunkett ◽  
Velmurugan Natarajan ◽  
Florence Mus ◽  
Carolann M. Knutson ◽  
...  

ABSTRACT Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions of the antiactivator-encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium-releasing phenotype. The findings reported here indicated that cultures of this high-ammonium-accumulating strain may experience metal limitation when grown using standard Burk's medium, which could be amended by increasing the molybdenum levels to further increase the ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription levels or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes that may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium. IMPORTANCE The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL-disrupted) and wild-type strains and what was previously reported for the wild-type strain under exponential-phase growth conditions. These results demonstrate that further improvement of the ammonium yield in this nitrogenase-deregulated strain can be obtained by increasing the amount of available molybdenum in the medium. These results also indicate a potential preference for one of two ATP synthases present in A. vinelandii as well as a prominent role for the membrane-bound hydrogenase over the soluble hydrogenase in hydrogen gas recycling. These results should inform future studies aimed at elucidating the important features of this phenotype and at maximizing ammonium production by this strain.


2018 ◽  
Author(s):  
Shutong Wang ◽  
Yi Xu ◽  
Zhenlun Li

AbstractStrain W-6 was isolated from the purple soil and successfully identifed asStenotrophomonas maltophiliaand used for the investigation on nitrogen utilization. Strain W-6 was monitored with the ability of biological nitrogen fixation when N2was used for the sole nitrogen source, and yet nitrogenase activity would be inhibited in the presence of extra nitrogen. Moreover, Strain W-6 could utilize NO3−, NO2−and NH4+for cell growth through assimilation, but unable to convert them to atmospheric nitrogen. Meantime, accumulation of nitrite was observed during the nitrate removal process, and the optimal conditions for nitrate removal were temperature of 20°C, shaking speed of 150 rpm, sodium succinate as the carbon source and C/N of 12. The experimental results indicate thatStenotrophomonas maltophiliautilize W-6 could utilize not only N2but also other nitrogen sources directly as its N substance. Therefore, heterotrophicAzotobactermay possess a great significance to nitrogen cycle except in biological nitrogen fixation.ImportanceAzotobacterspp. are found in soils worldwide, with features not simply for the nitrogen fixation, but for the energy metabolism relevant to agriculture. However, the role ofAzotobacterpotential in the function of nitrogen cycle except in biological nitrogen fixation is largely unknown. As such, whether bacteria utilize either inorganic nitrogen or organic nitrogen has remained obscure. The present studies indicate thatStenotrophomonas maltophiliaW-6 could highly efficient utilize nitrate, nitrite and ammonium etc. N substance and detect NH4+as final product. The transport velocities of nitrate-N to nitrite-N was quickly without gaseous nitrogen was produced. We probed the relationship between biological nitrogen fixation and N cycle via N conversion processes byS. maltophiliaW-6 with nitrogen-fixing ability


2021 ◽  
Author(s):  
Alexander B Alleman ◽  
Florence Mus ◽  
John W Peters

There is considerable interest in promoting biological nitrogen fixation as a mechanism to reduce the inputs of nitrogenous fertilizers in agriculture, a problem of agronomic, economic, and environmental importance. For the potential impact of biological nitrogen fixation in agriculture to be realized, there are considerable fundamental knowledge gaps that need to be addressed. Biological nitrogen fixation or the reduction of N2 to NH3 is catalyzed by nitrogenase which requires a large amount of energy in the form of ATP and low potential electrons. Nitrogen-fixing organisms that respire aerobically have an advantage in meeting the energy demands of biological nitrogen fixation but face challenges of protecting nitrogenase from inactivation in the presence of oxygen. Here, we have constructed a genome-scale metabolic model of the aerobic metabolism of nitrogen-fixing bacteria Azotobacter vinelandii, which uses a complex electron transport system, termed respiratory protection, to consume oxygen at a high rate keeping intracellular conditions microaerobic. Our model accurately determines growth rate under high oxygen and high substrate concentration conditions, demonstrating the large flux of energy directed to respiratory protection. While respiratory protection mechanisms compensate the energy balance in high oxygen conditions, it does not account for all substrate intake, leading to increased maintenance rates. We have also shown how A. vinelandii can adapt under different oxygen concentrations and metal availability by rearranging flux through the electron transport system. Accurately determining the energy balance in a genome-scale metabolic model is required for future engineering approaches.


2019 ◽  
Author(s):  
◽  
Nhung Thi Huyen Hoang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Nitrogen is a macronutrient that is critical for plant growth and development because it provides the building blocks of nucleic acids, proteins, chlorophyll, and energy- transfer compounds, such as ATP. Although 78% of the atmosphere is diatomic nitrogen, this form is inert and unavailable to plants due to the strong nitrogen-nitrogen triple bond. Plants can only absorb nitrogen in the forms of NH4+ or NO3-. Most of the inorganic nitrogen available to crop plants is provided through fertilizers synthesized based on the Haber-Bosch process. This process converts atmospheric nitrogen (N2) into ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst (iron) under high temperatures (~500 [degrees]C) and high pressures (150-300 bar). Ammonia production by this method consumes a lot of energy, which is derived from burning fossil fuels. Synthetic ammonia production by the Haber-Bosch process causes losses of biodiversity through eutrophication, soil acidification and global increase in N2O atmospheric concentration, which is the third most significant greenhouse gas. An alternative approach to provide a sustainable nitrogen source to plants without causing such damage to the environment is through biological nitrogen fixation between legume species and Rhizobium bacteria. The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, specialized organs within which rhizobia convert atmospheric nitrogen into ammonia for plant consumption. In return, the legume host plants provide rhizobia with photosynthate as a carbon source for their growth. The legume - Rhizobium symbiosis is a sophisticated process that requires numerous regulators including the 20-24 nucleotide-long microRNAs which negatively regulate the expression of their target messenger RNAs. In my study, we provide two examples that demonstrate the significant role of microRNAs in the symbiotic interplay between soybean, an important legume crop, and rhizobia. In the first example, our results suggest that gma-miR319i functions as a positive regulator of nodule number during the soybean - Bradyrhizobium symbiosis by targeting the TCP33 transcription factor. Overexpression and CRISPR/cas9-mediated gene mutation of gma-miR319i increased and reduced nodule number after rhizobial inoculation, respectively. gma-miR319i and TCP33 showed an inverse expression pattern in different stages of nodule development. TCP33 modulated nodule development in a gma-miR319i dependent manner. The expression of gma-miR319i and TCP33 was differentially regulated in one soybean mutant line that exhibits a hypernodulation phenotype. In the second example, we further investigated the mechanism by which two identical microRNAs, gma-miR171o and gma-miR171q, function in modulating the spatial and temporal aspects of soybean nodulation. Although sharing the identical mature sequence, gma-miR171o and gma-miR171q genes are divergent and show unique, tissue-specific expression patterns. The expression levels of the two miRNAs are negatively correlated with that of their target genes. Ectopic expression of these miRNAs in transgenic hairy roots resulted in a significant reduction in nodule formation. Both gma-miR171o and gma-miR171q target members of the GRAS transcription factor superfamily, namely GmSCL-6 and GmNSP2. Besides those two above-mentioned examples, we were able to generate and characterize an enhancer trap insertional mutant of the NODULATION SIGNALING PATHWAY 2 (NSP2) gene which is the target gene of Gma-miR171 and also an important regulator of nodulation. Overall, our study shows the importance of microRNAs in the regulation of nitrogen-fixing symbiosis. Our results contribute to efforts to fully understand the molecular mechanisms controlling the legume - Rhizobium interaction. Our ultimate hope is that the information gained through my studies can lead to an increased utilization of biological nitrogen fixation for sustainable agriculture and environment protection.


2016 ◽  
Vol 18 (10) ◽  
pp. 3522-3534 ◽  
Author(s):  
Ana Romina Fox ◽  
Gabriela Soto ◽  
Claudio Valverde ◽  
Daniela Russo ◽  
Antonio Lagares ◽  
...  

2021 ◽  
Author(s):  
Amanda K. Garcia ◽  
Bryan Kolaczkowski ◽  
Betul Kacar

The evolution of biological nitrogen fixation, uniquely catalyzed by nitrogenase enzymes, has been one of the most consequential biogeochemical innovations over life's history. Though understanding the early evolution of nitrogen fixation has been a longstanding goal from molecular, biogeochemical, and planetary perspectives, its origins remain enigmatic. In this study, we reconstructed the evolutionary histories of nitrogenases, as well as homologous maturase proteins that participate in the assembly of the nitrogenase active-site cofactor but are not able to fix nitrogen. We combined phylogenetic and ancestral sequence inference with an analysis of predicted functionally divergent sites between nitrogenases and maturases to infer the nitrogen-fixing capabilities of their shared ancestors. Our results provide phylogenetic constraints to the emergence of nitrogen fixation and suggest that nitrogenases likely emerged from maturase-like predecessors. Though the precise functional role of such a predecessor protein remains speculative, our results highlight evolutionary contingency as a significant factor shaping the evolution of a biogeochemically essential enzyme.


Sign in / Sign up

Export Citation Format

Share Document