essential enzyme
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 105)

H-INDEX

37
(FIVE YEARS 6)

2021 ◽  
Vol 26 (4) ◽  
pp. 166
Author(s):  
Achmad Rodiansyah ◽  
Sitoresmi Prabaningtyas ◽  
Mastika Marisahani Ulfah ◽  
Ainul Fitria Mahmuda ◽  
Uun Rohmawati

Amylolytic bacteria are a source of amylase, which is an essential enzyme to support microalgae growth in the bioreactor for microalgae culture. In a previous study, the highest bacterial isolate to hydrolyze amylum (namely PAS) was successfully isolated from Ranu Pani, Indonesia, and it was identified as Bacillus amyloliquefaciens. That bacterial isolate (B. amyloliquefaciens PAS) also has been proven to accelerate Chlorella vulgaris growth in the mini bioreactor. This study aims to detect, isolate, and characterize the PAS’s α‐amylase encoding gene. This study was conducted with DNA extraction, amplification of α‐amylase gene with polymerase chain reaction (PCR) method with the specific primers, DNA sequencing, phylogenetic tree construction, and protein modeling. The result showed that α‐amylase was successfully detected in PAS bacterial isolate. The α‐amylase DNA fragment was obtained 1,468 bp and that translated sequence has an identity of about 98.3% compared to the B. amylolyquefaciens α‐amylase 3BH4 in the Protein Data Bank (PDB). The predicted 3D protein model of the PAS’s α‐amylase encoding gene has amino acid variations that predicted affect the protein’s structure in the small region. This research will be useful for further research to produce recombinant α‐amylase.


2021 ◽  
Vol 23 (1) ◽  
pp. 368
Author(s):  
Jana Fulnečková ◽  
Ladislav Dokládal ◽  
Karolína Kolářová ◽  
Martina Nešpor Dadejová ◽  
Klára Procházková ◽  
...  

Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 706
Author(s):  
Lianghuan Zeng ◽  
Junge Li ◽  
Yuanyuan Cheng ◽  
Dandan Wang ◽  
Jingyan Gu ◽  
...  

Recent explorations of tool-like alginate lyases have been focused on their oligosaccharide-yielding properties and corresponding mechanisms, whereas most were reported as endo-type with α-L-guluronate (G) preference. Less is known about the β-D-mannuronate (M) preference, whose commercial production and enzyme application is limited. In this study, we elucidated Aly6 of Flammeovirga sp. strain MY04 as a novel M-preferred exolytic bifunctional lyase and compared it with AlgLs of Pseudomonas aeruginosa (Pae-AlgL) and Azotobacter vinelandii (Avi-AlgL), two typical M-specific endolytic lyases. This study demonstrated that the AlgL and heparinase_II_III modules play indispensable roles in determining the characteristics of the recombinant exo-type enzyme rAly6, which is preferred to degrade M-enriched substrates by continuously cleaving various monosaccharide units from the nonreducing end, thus yielding various size-defined ΔG-terminated oligosaccharides as intermediate products. By contrast, the endolytic enzymes Pae-rAlgL and Avi-rAlgL varied their action modes specifically against M-enriched substrates and finally degraded associated substrate chains into various size-defined oligosaccharides with a succession rule, changing from ΔM to ΔG-terminus when the product size increased. Furthermore, site-directed mutations and further protein structure tests indicated that H195NHSTW is an active, half-conserved, and essential enzyme motif. This study provided new insights into M-preferring lyases for novel resource discoveries, oligosaccharide preparations, and sequence determinations.


Author(s):  
G. Koteswara Reddy ◽  
V. Nikhil Reddy ◽  
S. Phavethra ◽  
A. Bhavani ◽  
A. J. Vineeth ◽  
...  

The objectives of the study were to examine the virtual screening of the compounds and sigma-covalent inhibition of SARS-CoV-2 RdRp (RNA-Dependent RNA-Polymerase), which is conserved and is an essential enzyme for RNA transcription and replication of this virus. In this study, we collected around 1225 similar compounds of Penciclovir and Acyclovir inhibitors from PubChem and predicted ADME (Adsorption, Distribution, Metabolism and Excretion) molecular descriptors using Swiss-ADME server. Virtually screened 24/1225 compounds based on drug-likeliness five rules (Lipinski, Ghose, Veber, Egan, and Muegge) and lead-likeliness properties. Further 10/24 compounds screened, based on high binding affinity and RMSD<3.5Å against RdRp structure using PyRx docking software. Furthermore, the molecular interactions of 10 compounds studied using Discovery studio software and finally screened five PubChem compounds 57201841, 135408972, 54552823, 135409422 and 467850, based on bioactivity score using Molinsipiration cheminformatics software. All these five compounds showed up anti-SARS CoV-2 activity, though further in-vitro studies are required.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pratik Rajesh Chheda ◽  
Grant T. Cooling ◽  
Sondra F. Dean ◽  
Jonah Propp ◽  
Kathryn F. Hobbs ◽  
...  

AbstractOne of our greatest challenges in drug design is targeting cryptic allosteric pockets in enzyme targets. Drug leads that do bind to these cryptic pockets are often discovered during HTS campaigns, and the mechanisms of action are rarely understood. Nevertheless, it is often the case that the allosteric pocket provides the best option for drug development against a given target. In the current studies we present a successful way forward in rationally exploiting the cryptic allosteric pocket of H. pylori glutamate racemase, an essential enzyme in this pathogen’s life cycle. A wide range of computational and experimental methods are employed in a workflow leading to the discovery of a series of natural product allosteric inhibitors which occupy the allosteric pocket of this essential racemase. The confluence of these studies reveals a fascinating source of the allosteric inhibition, which centers on the abolition of essential monomer-monomer coupled motion networks.


2021 ◽  
Author(s):  
Marie-line Bortolin-Cavaillé ◽  
Aurélie Quillien ◽  
Supuni Thalalla Gamage ◽  
Justin M Thomas ◽  
Aldema Sas-Chen ◽  
...  

NAT10 is an essential enzyme that catalyzes the formation of N4-acetylcytidine (ac4C) in eukaryotic transfer RNA (tRNA) and 18S ribosomal RNA (rRNA). Recent studies in human cells suggested that rRNA acetylation is dependent on SNORD13, a non-canonical box C/D small nucleolar RNA (SNORD) predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10 essential function in pre-rRNA processing remain to be defined. Here, we used CRISPR-Cas9 genome editing to formally demonstrate that SNORD13 is required for acetylation of a single cytidine residue of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for yeast or human cell growth, ribosome biogenesis, translation, and the development of multicellular metazoan model organisms. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation machinery that led to the characterization of many novel SNORD13 genes in phylogenetically-distant metazoans and more deeply rooted photosynthetic organisms. This includes an atypical SNORD13-like RNA in D. melanogaster which appears to guide ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that C. elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Altogether, our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across the eukaryotic tree of life and raise new questions regarding the biological function and evolutionary persistence of this highly conserved rRNA base modification.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leo Bellin ◽  
Vanessa Scherer ◽  
Eva Dörfer ◽  
Anne Lau ◽  
Alexandre Magno Vicente ◽  
...  

CTP synthases (CTPS) comprise a protein family of the five members CTPS1-CTPS5 in Arabidopsis, all located in the cytosol. Specifically, downregulation of CTPS2 by amiRNA technology results in plants with defects in chlorophyll accumulation and photosynthetic performance early in development. CTP and its deoxy form dCTP are present at low levels in developing seedlings. Thus, under conditions of fast proliferation, the synthesis of CTP (dCTP) can become a limiting factor for RNA and DNA synthesis. The higher sensitivity of ami-CTPS2 lines toward the DNA-Gyrase inhibitor ciprofloxacin, together with reduced plastid DNA copy number and 16S and 23S chloroplast ribosomal RNA support this view. High expression and proposed beneficial biochemical features render CTPS2 the most important isoform for early seedling development. In addition, CTPS2 was identified as an essential enzyme in embryo development before, as knock-out mutants were embryo lethal. In line with this, ami-CTPS2 lines also exhibited reduced seed numbers per plant.


Author(s):  
Bin Lei ◽  
Christopher J. Frost ◽  
Tao Xu ◽  
Joshua R. Herr ◽  
John E. Carlson ◽  
...  

Promoters play critical roles in controlling the transcription of genes and are important as tools to drive heterologous expression for biotechnological applications. In addition to core transcription factor-binding motifs that assist in the binding of RNA polymerases, there are specific nucleotide sequences in a promoter region to allow regulation of gene expression. The allene oxide synthase (AOS) gene family are cytochrome P450s that are responsive to a variety of environmental stress, making them good candidates for the discovery of inducible promoters. Populus AOS homologs separate phylogenetically into two clades. Based on the 19 promoter motifs with significant abundance differences between the two clades, Clade I AOS genes are likely more responsive to hormones, salt, and pathogen, whereas clade II homologs are likely inducible by water stress. In this study, an upstream promoter from a Clade I poplar AOS encoding gene (AOS1) was cloned and used to drive the expression of a ß-glucuronidase (GUS) gene in Arabidopsis. AOS is an essential enzyme in the lipoxygenase pathway that is responsible for the production of many non-volatile oxylipins in plants, including the jasmonates, which are regulatory phytohormones coordinating a variety of biological and stress response functions. Consistent with AOS transcript expression patterns, we found that the poplar AOS1 promoter drives rapid and localized expression by wounding. The study provides insight on the responsive elements in the poplar AOS promoters, but more importantly identifies a strong wound-inducible and localized promoter for future applications.


2021 ◽  
Author(s):  
Somdutt Mujwar ◽  
Avanish Tripathi

Abstract Fungal infections in humans are responsible for mild to severe infections resulting in the systemic effects responsible for a large amount of mortality. The invasive fungal infections are having similar symptomatic effects to those of COVID-19. The COVID-19 patients are immunocompromised in nature and have a high probability of developing severe fungal infections resulting in the development of further complications. The existing antifungal therapy is having associated problems related to the development of drug resistance, sub-potent in nature, and the presence of undesirable toxic effects. The fungal dihydrofolate reductase is an essential enzyme involved in the absorption of dietary folic acid and its conversion into tetrahydrofolate, which is a coenzyme required for the biosynthesis of the fungal nucleotides. Thus, in the current study, an attempt has been made to identify potential folate inhibitors of Candida albicans by a computational drug repurposing approach. Benzbromarone is identified as a potential anti-folate agent based upon the molecular docking simulation-based virtual screening followed by the molecular dynamic simulation of the macromolecular complex for the development of a novel therapy for the treatment of candidiasis.


Sign in / Sign up

Export Citation Format

Share Document