Swarm Intelligence and Swarm Robotics in the Path Planning Problem

Author(s):  
Quoc Bao Diep ◽  
Thanh Cong Truong ◽  
Ivan Zelinka
Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 171
Author(s):  
Haoran Zhu ◽  
Yunhe Wang ◽  
Zhiqiang Ma ◽  
Xiangtao Li

Path-planning for uninhabited combat air vehicles (UCAV) is a typically complicated global optimization problem. It seeks a superior flight path in a complex battlefield environment, taking into various constraints. Many swarm intelligence (SI) algorithms have recently gained remarkable attention due to their capability to address complex optimization problems. However, different SI algorithms present various performances for UCAV path-planning since each algorithm has its own strengths and weaknesses. Therefore, this study provides an overview of different SI algorithms for UCAV path-planning research. In the experiment, twelve algorithms that published in major journals and conference proceedings are surveyed and then applied to UCAV path-planning. Moreover, to demonstrate the performance of different algorithms in further, we design different scales of problem cases for those comparative algorithms. The experimental results show that UCAV can find the safe path to avoid the threats efficiently based on most SI algorithms. In particular, the Spider Monkey Optimization is more effective and robust than other algorithms in handling the UCAV path-planning problem. The analysis from different perspectives contributes to highlight trends and open issues in the field of UCAVs.


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


1998 ◽  
Vol 29 (8) ◽  
pp. 807-868 ◽  
Author(s):  
ALBERT Y. ZOMAYA MATT R. WRIGHT TAR

Manufacturing ◽  
2002 ◽  
Author(s):  
Mahadevan Balasubramaniam ◽  
Taejung Kim ◽  
Sanjay Sarma

In previous work, we and others have developed visibility-based tool path generation schemes. Almost all previous research implicitly assumes that all visible parts are machinable. Though usually true practice, this assumption hides several subtleties inherent to the geometry of the machining process. Here, we define machinability in a stricter sense, as a generalization of the robotic path planning problem. Then, we define various “tight” necessary conditions for strict machinability, and show the connections between these conditions. After demonstrating the richness of the information contained in visibility, we show how to compute visibility effectively. Visible directions constitute an approximate feasible configuration space of a cutting tool. We also address questions pertaining to the topological connectivity of the feasible space. The theoretical results of this paper lay down a firmer foundation of machining path planning.


Sign in / Sign up

Export Citation Format

Share Document