scholarly journals A Comparative Study of Swarm Intelligence Algorithms for UCAV Path-Planning Problems

Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 171
Author(s):  
Haoran Zhu ◽  
Yunhe Wang ◽  
Zhiqiang Ma ◽  
Xiangtao Li

Path-planning for uninhabited combat air vehicles (UCAV) is a typically complicated global optimization problem. It seeks a superior flight path in a complex battlefield environment, taking into various constraints. Many swarm intelligence (SI) algorithms have recently gained remarkable attention due to their capability to address complex optimization problems. However, different SI algorithms present various performances for UCAV path-planning since each algorithm has its own strengths and weaknesses. Therefore, this study provides an overview of different SI algorithms for UCAV path-planning research. In the experiment, twelve algorithms that published in major journals and conference proceedings are surveyed and then applied to UCAV path-planning. Moreover, to demonstrate the performance of different algorithms in further, we design different scales of problem cases for those comparative algorithms. The experimental results show that UCAV can find the safe path to avoid the threats efficiently based on most SI algorithms. In particular, the Spider Monkey Optimization is more effective and robust than other algorithms in handling the UCAV path-planning problem. The analysis from different perspectives contributes to highlight trends and open issues in the field of UCAVs.

2018 ◽  
Vol 8 (11) ◽  
pp. 2253 ◽  
Author(s):  
Yang Xue

In many areas, such as mobile robots, video games and driverless vehicles, path planning has always attracted researchers’ attention. In the field of mobile robotics, the path planning problem is to plan one or more viable paths to the target location from the starting position within a given obstacle space. Evolutionary algorithms can effectively solve this problem. The non-dominated sorting genetic algorithm (NSGA-II) is currently recognized as one of the evolutionary algorithms with robust optimization capabilities and has solved various optimization problems. In this paper, NSGA-II is adopted to solve multi-objective path planning problems. Three objectives are introduced. Besides the usual selection, crossover and mutation operators, some practical operators are applied. Moreover, the parameters involved in the algorithm are studied. Additionally, another evolutionary algorithm and quality metrics are employed for examination. Comparison results demonstrate that non-dominated solutions obtained by the algorithm have good characteristics. Subsequently, the path corresponding to the knee point of non-dominated solutions is shown. The path is shorter, safer and smoother. This path can be adopted in the later decision-making process. Finally, the above research shows that the revised algorithm can effectively solve the multi-objective path planning problem in static environments.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Gaige Wang ◽  
Lihong Guo ◽  
Hong Duan ◽  
Heqi Wang ◽  
Luo Liu ◽  
...  

Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Gaige Wang ◽  
Lihong Guo ◽  
Hong Duan ◽  
Luo Liu ◽  
Heqi Wang

Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012002
Author(s):  
Zhuokai Wu

Abstract The multi-robot path planning aims to explore a set of non-colliding paths with the shortest sum of lengths for multiple robots. The most popular approach is to artificially decompose the map into discrete small grids before applying heuristic algorithms. To solve the path planning in continuous environments, we propose a decentralized two-stage algorithm to solve the path-planning problem, where the obstacle and inter-robot collisions are both considered. In the first stage, an obstacle- avoidance path-planning problem is mathematically developed by minimizing the travel length of each robot. Specifically, the obstacle-avoidance trajectories are generated by approximating the obstacles as convex-concave constraints. In the second stage, with the given trajectories, we formulate a quadratic programming (QP) problem for velocity control using the control barrier and Lyapunov function (CBF-CLF). In this way, the multi-robot collision avoidance as well as time efficiency are satisfied by adapting the velocities of robots. In sharp contrast to the conventional heuristic methods, path length, smoothness and safety are fully considered by mathematically formulating the optimization problems in continuous environments. Extensive experiments as well as computer simulations are conducted to validate the effectiveness of the proposed path-planning algorithm.


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Sign in / Sign up

Export Citation Format

Share Document