Enhancing the Capacity of Detecting and Classifying Cavitation Noise Generated from Propeller Using the Convolution Neural Network

Author(s):  
Hoang Nhat Bach ◽  
Duc Van Nguyen ◽  
Ha Le Vu
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3353
Author(s):  
Nhat Hoang Bach ◽  
Le Ha Vu ◽  
Van Duc Nguyen

This paper proposes a method to enhance the quality of detecting and classifying surface vehicle propeller cavitation noise (VPCN) in shallow water by using the improved Detection Envelope Modulation On Noise (DEMON) algorithm in combination with the modified Convolution Neural Network (CNN). To improve the quality of the VPCN spectrogram signal, we apply the DEMON algorithm while analyzing the amplitude variation (AV) to detect the fundamental frequencies of the VPCN signal. To enhance the performance of the traditional CNN, we adapt the size of the sliding window in accordance with the properties of the VPCN spectrogram data, and also reconstruct the CNN layer structure. As for the results, the fundamental frequencies contented in the VPCN spectrogram data can be detected. The analytical results based on the measured data show that the accuracy of the VPCN classification obtained by the proposed method is above 90%, which is higher than those obtained by traditional methods.


2019 ◽  
Author(s):  
CHIEN WEI ◽  
Chi Chow Julie ◽  
Chou Willy

UNSTRUCTURED Backgrounds: Dengue fever (DF) is an important public health issue in Asia. However, the disease is extremely hard to detect using traditional dichotomous (i.e., absent vs. present) evaluations of symptoms. Convolution neural network (CNN), a well-established deep learning method, can improve prediction accuracy on account of its usage of a large number of parameters for modeling. Whether the HT person fit statistic can be combined with CNN to increase the prediction accuracy of the model and develop an application (APP) to detect DF in children remains unknown. Objectives: The aim of this study is to build a model for the automatic detection and classification of DF with symptoms to help patients, family members, and clinicians identify the disease at an early stage. Methods: We extracted 19 feature variables of DF-related symptoms from 177 pediatric patients (69 diagnosed with DF) using CNN to predict DF risk. The accuracy of two sets of characteristics (19 symptoms and four other variables, including person mean, standard deviation, and two HT-related statistics matched to DF+ and DF−) for predicting DF, were then compared. Data were separated into training and testing sets, and the former was used to predict the latter. We calculated the sensitivity (Sens), specificity (Spec), and area under the receiver operating characteristic curve (AUC) across studies for comparison. Results: We observed that (1) the 23-item model yields a higher accuracy rate (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90) based on the 177-case training set; (2) the Sens values are almost higher than the corresponding Spec values (90% in 10 scenarios) for predicting DF; (3) the Sens and Spec values of the 23-item model are consistently higher than those of the 19-item model. An APP was subsequently designed to detect DF in children. Conclusion: The 23-item model yielded higher accuracy rates (0.95) and AUC (0.94) than the 19-item model (accuracy = 0.92, AUC = 0.90). An APP could be developed to help patients, family members, and clinicians discriminate DF from other febrile illnesses at an early stage.


Sign in / Sign up

Export Citation Format

Share Document