Optimization of Training Data Set Based on Linear Systematic Sampling to Solve the Inverse Kinematics of 6 DOF Robotic Arm with Artificial Neural Networks

Author(s):  
Ma. del Rosario Martínez-Blanco ◽  
Teodoro Ibarra-Pérez ◽  
Fernando Olivera-Domingo ◽  
José Manuel Ortiz-Rodríguez
2021 ◽  
Vol 11 (15) ◽  
pp. 6723
Author(s):  
Ariana Raluca Hategan ◽  
Romulus Puscas ◽  
Gabriela Cristea ◽  
Adriana Dehelean ◽  
Francois Guyon ◽  
...  

The present work aims to test the potential of the application of Artificial Neural Networks (ANNs) for food authentication. For this purpose, honey was chosen as the working matrix. The samples were originated from two countries: Romania (50) and France (53), having as floral origins: acacia, linden, honeydew, colza, galium verum, coriander, sunflower, thyme, raspberry, lavender and chestnut. The ANNs were built on the isotope and elemental content of the investigated honey samples. This approach conducted to the development of a prediction model for geographical recognition with an accuracy of 96%. Alongside this work, distinct models were developed and tested, with the aim of identifying the most suitable configurations for this application. In this regard, improvements have been continuously performed; the most important of them consisted in overcoming the unwanted phenomenon of over-fitting, observed for the training data set. This was achieved by identifying appropriate values for the number of iterations over the training data and for the size and number of the hidden layers and by introducing of a dropout layer in the configuration of the neural structure. As a conclusion, ANNs can be successfully applied in food authenticity control, but with a degree of caution with respect to the “over optimization” of the correct classification percentage for the training sample set, which can lead to an over-fitted model.


1993 ◽  
Vol 39 (11) ◽  
pp. 2248-2253 ◽  
Author(s):  
P K Sharpe ◽  
H E Solberg ◽  
K Rootwelt ◽  
M Yearworth

Abstract We studied the potential benefit of using artificial neural networks (ANNs) for the diagnosis of thyroid function. We examined two types of ANN architecture and assessed their robustness in the face of diagnostic noise. The thyroid function data we used had previously been studied by multivariate statistical methods and a variety of pattern-recognition techniques. The total data set comprised 392 cases that had been classified according to both thyroid function and 19 clinical categories. All cases had a complete set of results of six laboratory tests (total thyroxine, free thyroxine, triiodothyronine, triiodothyronine uptake test, thyrotropin, and thyroxine-binding globulin). This data set was divided into subsets used for training the networks and for testing their performance; the test subsets contained various proportions of cases with diagnostic noise to mimic real-life diagnostic situations. The networks studied were a multilayer perceptron trained by back-propagation, and a learning vector quantization network. The training data subsets were selected according to two strategies: either training data based on cases with extreme values for the laboratory tests with randomly selected nonextreme cases added, or training cases from very pure functional groups. Both network architectures were efficient irrespective of the type of training data. The correct allocation of cases in test data subsets was 96.4-99.7% when extreme values were used for training and 92.7-98.8% when only pure cases were used.


2005 ◽  
Vol 7 (4) ◽  
pp. 291-296 ◽  
Author(s):  
P. Hettiarachchi ◽  
M. J. Hall ◽  
A. W. Minns

The last decade has seen increasing interest in the application of Artificial Neural Networks (ANNs) for the modelling of the relationship between rainfall and streamflow. Since multi-layer, feed-forward ANNs have the property of being universal approximators, they are able to capture the essence of most input–output relationships, provided that an underlying deterministic relationship exists. Unfortunately, owing to the standardisation of inputs and outputs that is required to run ANNs, a problem arises in extrapolation: if the training data set does not contain the maximum possible output value, an unmodified network will be unable to synthesise this peak value. The occurrence of high magnitude, low frequency events within short periods of record is largely fortuitous. Therefore, the confidence in the neural network model can be greatly enhanced if some methodology can be found for incorporating domain knowledge about such events into the calibration and verification procedure in addition to the available measured data sets. One possible form of additional domain knowledge is the Estimated Maximum Flood (EMF), a notional event with a small but non-negligible probability of exceedence. This study investigates the suitability of including an EMF estimate in the training set of a rainfall–runoff ANN in order to improve the extrapolation characteristics of the network. A study has been carried out in which EMFs have been included, along with recorded flood events, in the training of ANN models for six catchments in the south west of England. The results demonstrate that, with prior transformation of the runoff data to logarithms of flows, the inclusion of domain knowledge in the form of such extreme synthetic events improves the generalisation capabilities of the ANN model and does not disrupt the training process. Where guidelines are available for EMF estimation, the application of this approach is recommended as an alternative means of overcoming the inherent extrapolation problems of multi-layer, feed-forward ANNs.


2010 ◽  
Vol 43 (4) ◽  
pp. 769-779 ◽  
Author(s):  
Umit Kockan ◽  
Zafer Evis

In this study, the hexagonal lattice parameters of apatite compounds,M10(TO4)6X2, whereMis Na+, Ca2+, Ba2+, Cd2+, Pb2+, Sr2+, Mn2+, Zn2+, Eu2+, Nd3+, La3+or Y3+,Tis As+5, Cr+5, P5+, V5+or Si+4, andXis F−, Cl−, OH−or Br−, were predicted from their ionic radii by artificial neural networks. A multilayer perceptron network was used for training and the best results were obtained with a Bayesian regularization method. Four neurons were used in the hidden layer, utilizing a tangent sigmoid activation function, while one neuron was used in the output layer with a pure linear function. The results of the training showed that the correlation coefficients for the hexagonal lattice parameters were 0.991 for the training data set, which is very close to unity, demonstrating that the learning process was successful. In addition, the average errors of the predicted lattice parameters were less than 1% for the data set prepared with single ions at theM,TandXsites, as well as for apatites with coupled substitutions involving up to three different ions at each site. Simple mathematical formulae were derived for the prediction of lattice parameters using average ionic radii as independent variables.


Author(s):  
Haitham Baomar ◽  
Peter J. Bentley

AbstractWe describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond.


2021 ◽  
Author(s):  
Jakub Ważny ◽  
Michał Stefaniuk ◽  
Adam Cygal

AbstractArtificial neural networks method (ANNs) is a common estimation tool used for geophysical applications. Considering borehole data, when the need arises to supplement a missing well log interval or whole logging—ANNs provide a reliable solution. Supervised training of the network on a reliable set of borehole data values with further application of this network on unknown wells allows creation of synthetic values of missing geophysical parameters, e.g., resistivity. The main assumptions for boreholes are: representation of similar geological conditions and the use of similar techniques of well data collection. In the analyzed case, a set of Multilayer Perceptrons were trained on five separate chronostratigraphic intervals of borehole, considered as training data. The task was to predict missing deep laterolog (LLD) logging in a borehole representing the same sequence of layers within the Lublin Basin area. Correlation between well logs data exceeded 0.8. Subsequently, magnetotelluric parametric soundings were modeled and inverted on both boreholes. Analysis showed that congenial Occam 1D models had better fitting of TM mode of MT data in each case. Ipso facto, synthetic LLD log could be considered as a basis for geophysical and geological interpretation. ANNs provided solution for supplementing datasets based on this analytical approach.


Sign in / Sign up

Export Citation Format

Share Document