In Silico Mapping of the Omecamtiv Mecarbil Effects from the Sarcomere to the Whole-Heart and Back Again

Author(s):  
Stefano Longobardi ◽  
Anna Sher ◽  
Steven A. Niederer
2009 ◽  
Vol 35 (10) ◽  
pp. 1942-1947
Author(s):  
Wan-Kun SONG ◽  
Ming-Xi ZHU ◽  
Yang-Lin ZHAO ◽  
Jing WANG ◽  
Wen-Fu LI ◽  
...  

2012 ◽  
Vol 31 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Kenta Shirasawa ◽  
Kohei Ishii ◽  
Cholgwang Kim ◽  
Tomohiro Ban ◽  
Munenori Suzuki ◽  
...  

Science ◽  
2001 ◽  
Vol 292 (5523) ◽  
pp. 1915-1918 ◽  
Author(s):  
A. Grupe

2008 ◽  
Vol 75 (4) ◽  
pp. 430-438 ◽  
Author(s):  
Elisabetta Milanesi ◽  
Riccardo Negrini ◽  
Fausta Schiavini ◽  
Letizia Nicoloso ◽  
Raffaele Mazza ◽  
...  

We targeted quantitative trait loci (QTL) for milk protein percentage (P%) in two Italian Holstein granddaughter design families using selective genotyping in combination with high throughput amplified fragment length polymorphism (AFLP) markers. A total of 64 extreme high and low sires in respect to estimated breeding value (EBV) for P% (EBVP%) were genotyped with 25 AFLP primer combinations that revealed 305 and 291 polymorphisms in the two families. Association between markers and EBVP% was investigated by a linear model only on bands having paternal origin (105 and 96 AFLP bands in family D and S, respectively). Although no marker was significantly associated with the target trait after correction for multiple comparisons, 17 AFLP markers, significant without correction for multiple tests, were considered suggestive of the presence of a QTL. Eleven of these were successfully located on six Bos taurus (BTA) chromosomes by radiation hybrid or in-silico mapping. Ten of these mapped in the immediate neighbourhood (less than 10 cM) of already described QTL for P%. Suggestive association was verified in four regions by microsatellites analysis: one on BTA 10; one on BTA 28; and two on BTA 18. Microsatellites identified significant effects by single marker and interval mapping analyses on BTA 10 and BTA 28, while they were only suggestive of the presence of QTL on BTA 18. In summary, our results firstly indicate that AFLP markers may be used to seek QTL exploiting a selective genotyping approach in GDD, a wide used experimental design in cattle; secondly, propose two approaches for AFLP mapping, namely in-silico mapping exploiting most updated release from the bovine whole genome sequencing project, and physical mapping exploiting a panel of Bovine/Hamster Radiation Hybrids; and thirdly, provide new information on QTLs for an economic important trait in a never investigated Holstein cattle population. AFLP in combination with selective genotyping can be a useful strategy for QTL searching in minor livestock species, sometimes having large economic impact in marginal areas, where more informative markers are still poorly developed.


2018 ◽  
Vol 29 (9-10) ◽  
pp. 632-655 ◽  
Author(s):  
Darryl L. Hadsell ◽  
Louise A. Hadsell ◽  
Monique Rijnkels ◽  
Yareli Carcamo-Bahena ◽  
Jerry Wei ◽  
...  

2018 ◽  
Vol 96 (7) ◽  
pp. 676-680
Author(s):  
Péter Nánási ◽  
István Komáromi ◽  
János Almássy

Clinical treatment of heart failure is still not fully solved. A novel class of agents, the myosin motor activators, acts directly on cardiac myosin resulting in an increased force generation and prolongation of contraction. Omecamtiv mecarbil, the lead molecule of this group, is now in human phase 3 displaying promising clinical performance. However, omecamtiv mecarbil is not selective to myosin, because it readily binds to and activates cardiac ryanodine receptors (RyR-2), an effect that may cause complications in case of overdose. In this study, in silico analysis was performed to investigate the docking of omecamtiv mecarbil and other structural analogues to cardiac myosin heavy chain and RyR-2 to select the structure that has a higher selectivity to myosin over RyR-2. In silico docking studies revealed that omecamtiv mecarbil has comparable affinity to myosin and RyR-2: the respective Kd values are 0.60 and 0.87 μmol/L. Another compound, CK-1032100, has much lower affinity to RyR-2 than omecamtiv mecarbil, while it still has a moderate affinity to myosin. It was concluded that further research starting from the chemical structure of CK-1032100 may result a better myosin activator burdened probably less by the RyR-2 binding side effect. It also is possible, however, that the selectivity of omecamtiv mecarbil to myosin over RyR-2 cannot be substantially improved, because similar moieties seem to be responsible for the high affinity to both myosin and RyR-2.


Sign in / Sign up

Export Citation Format

Share Document