selective genotyping
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jiaojiao Ren ◽  
Penghao Wu ◽  
Gordon M. Huestis ◽  
Ao Zhang ◽  
Jingtao Qu ◽  
...  

Abstract Tar spot complex (TSC) is a major foliar disease of maize in many Central and Latin American countries and leads to severe yield loss. To dissect the genetic architecture of TSC resistance, a genome-wide association study (GWAS) panel and a bi-parental doubled haploid population were used for GWAS and selective genotyping analysis, respectively. A total of 115 SNPs in bin 8.03 were detected by GWAS and three QTL in bins 6.05, 6.07, and 8.03 were detected by selective genotyping. The major QTL qRtsc8-1 located in bin 8.03 was detected by both analyses, it explained 14.97% of the phenotypic variance. To fine-map qRtsc8-1, the recombinant-derived progeny test was implemented. Recombinations in each generation were backcrossed, and the backcross progenies were genotyped with Kompetitive Allele Specific PCR (KASP) markers and phenotyped for TSC resistance individually. The significant tests for comparing the TSC resistance between the two classes of progenies with and without resistant alleles were used for fine-mapping. In BC5 generation, qRtsc8-1 was fine mapped in an interval of ~721 kb flanked by markers of KASP81160138 and KASP81881276. In this interval, the candidate genes GRMZM2G063511 and GRMZM2G073884 were identified, which encode an integral membrane protein-like and a leucine-rich repeat receptor-like protein kinase, respectively. Both genes are involved in maize disease resistance responses. Two production markers KASP81160138 and KASP81160155 were verified in 471 breeding lines. This study provides valuable information for cloning the resistance gene, it will also facilitate the routine implementation of marker-assisted selection in the breeding pipeline for improving TSC resistance.


Author(s):  
Garrett M See ◽  
Benny E Mote ◽  
Matthew L Spangler

Abstract Selective genotyping of crossbred (CB) animals to include in traditionally purebred (PB) dominated genetic evaluations has been shown to provide an increase in the response to selection for CB performance. However, the inclusion of phenotypes from selectively genotyped CB animals, without the phenotypes of their non-genotyped cohorts, could cause bias in estimated variance components (VC) and subsequent estimated breeding values (EBV). The objective of the study was to determine the impact of selective CB genotyping on VC estimates and subsequent bias in EBV when non-genotyped CB animals are not included in genetic evaluations. A swine crossbreeding scheme producing 3-way CB animals was simulated to create selectively genotyped datasets. The breeding scheme consisted of three PB breeds each with 25 males and 450 females, F1 crosses with 1200 females and 12,000 CB progeny. Eighteen chromosomes each with 100 QTL and 4k SNP markers were simulated. Both PB and CB performance were considered to be moderately heritable (h2=0.4). Factors evaluated were, 1) CB phenotype and genotype inclusion of 15% (n=1800) or 35% (n=4200), 2) genetic correlation between PB and CB performance (rpc=0.1, 0.5 or 0.7) and 3) selective genotyping strategy. Genotyping strategies included: a) Random: random CB selection, b) Top: highest CB phenotype and c) Extreme: half highest and half lowest CB phenotypes. Top and Extreme selective genotyping strategies were considered by selecting animals in full-sib (FS) families or among the CB population (T). In each generation, 4320 PB selection candidates contributed phenotypic and genotypic records. Each scenario was replicated 15 times. VC were estimated for PB and CB performance utilizing bivariate models using pedigree relationships with dams of CB animals considered to be unknown. Estimated values of VC for PB performance were not statistically different from true values. Top selective genotyping strategies produced deflated estimates of phenotypic VC for CB performance compared to true values. When using estimated VC, Top_T and Extreme_T produced the most biased EBV, yet EBV of PB selection candidates for CB performance were most accurate when using Extreme_T. Results suggest that randomly selecting CB animals to genotype or selectively genotyping Top or Extreme CB animals within full-sib families can lead to accurate estimates of additive genetic VC for CB performance and unbiased EBV.


Author(s):  
Garrett M See ◽  
Benny E Mote ◽  
Matthew L Spangler

Abstract Inclusion of crossbred (CB) data into traditionally purebred (PB) genetic evaluations has been shown to increase the response in CB performance. Currently it is unrealistic to collect data on all CB animals in swine production systems, thus, a subset of CB animals must be selected to contribute genomic/phenotypic information. The aim of this study was to evaluate selective genotyping strategies in a simulated 3-way swine crossbreeding scheme. The swine crossbreeding scheme was simulated and produced 3-way CB animals for 6 generations with three distinct purebred breeds each with 25 and 175 mating males and females, respectively. F1 crosses (400 mating females) produced 4,000 terminal CB progeny which were subjected to selective genotyping. The genome consisted of 18 chromosomes with 1,800 QTL and 72k SNP markers. Selection was performed using estimated breeding values (EBV) for CB performance. It was assumed that both PB and CB performance was moderately heritable (h2=0.4). Several scenarios altering the genetic correlation between PB and CB performance (rpc=0.1, 0.3, 0.5, 0.7 or 0.9) were considered. CB animals were chosen based on phenotypes to select 200, 400 or 800 CB animals to genotype per generation. Selection strategies included: 1) Random: random selection, 2) Top: highest phenotype, 3) Bottom: lowest phenotype, 4) Extreme: half highest and half lowest phenotypes, and 5) Middle: average phenotype. Each selective genotyping strategy, except for Random, was considered by selecting animals in half-sib (HS) or full-sib (FS) families. The number of PB animals with genotypes and phenotypes each generation was fixed at 1680. Each unique genotyping strategy and rpc scenario was replicated 10 times. Selection of CB animals based on the Extreme strategy resulted in the highest (P<0.05) rates of genetic gain in CB performance (ΔG) when rpc<0.9. For highly correlated traits (rpc=0.9) selective genotyping did not impact (P>0.05) ΔG. No differences (P>0.05) were observed in ΔG between Top, Bottom or Middle when rpc>0.1. Higher correlations between true breeding values (TBV) and EBV were observed using Extreme when rpc<0.9. In general, family sampling method did not impact ΔG or the correlation between TBV and EBV. Overall, the Extreme genotyping strategy produced the greatest genetic gain and the highest correlations between TBV and EBV, suggesting that two tailed sampling of CB animals is the most informative when CB performance is the selection goal.


2020 ◽  
Vol 240 ◽  
pp. 104145
Author(s):  
Stefania Dall'Olio ◽  
Giuseppina Schiavo ◽  
Maurizio Gallo ◽  
Samuele Bovo ◽  
Francesca Bertolini ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 2377-2384
Author(s):  
Qi Chen ◽  
Wei Wang ◽  
Caixiang Wang ◽  
Mi Zhang ◽  
Jiwen Yu ◽  
...  

Gene introgression from wild species has been shown to be a feasible approach for fiber quality improvement in Upland cotton. Previously, we developed an interspecific G. mustelinum × G. hirsutum advanced-backcross population and mapped over one hundred QTL for fiber quality traits. In the current study, a trait-based selective genotyping approach was utilized to prioritize a small subset of introgression lines with high phenotypic values for different fiber quality traits, to simultaneously validate multiple fiber quality QTL in a single experiment. A total of 75 QTL were detected by CIM and/or single-marker analysis, including 11 significant marker-trait associations (P < 0.001) and three putative associations (P < 0.005) also reported in earlier studies. The QTL that have been validated include three each for fiber length, micronaire, and elongation, and one each for fiber strength and uniformity. Collectively, about 10% of the QTL previously reported have been validated here, indicating that selective genotyping has the potential to validate multiple marker-trait associations for different traits, especially those with a moderate to large-effect detected simultaneously in one experimental population. The G. mustelinum alleles contributed to improved fiber quality for all validated loci. The results from this study will lay the foundation for further fine mapping, marker-assisted selection and map-based gene cloning.


2019 ◽  
Vol 133 (3) ◽  
pp. 857-872 ◽  
Author(s):  
Li Yang ◽  
Dehui Zhao ◽  
Zili Meng ◽  
Kaijie Xu ◽  
Jun Yan ◽  
...  

2019 ◽  
Vol 96 (5) ◽  
pp. 505-516
Author(s):  
Jamuna Risal Paudel ◽  
Kyle M. Gardner ◽  
Benoit Bizimungu ◽  
David De Koeyer ◽  
Jun Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document