Influence of Interference and Noise on Indoor Localization Systems

Author(s):  
Huy Q. Tran ◽  
Chuong Nguyen Thien ◽  
Cheolkeun Ha
2021 ◽  
Author(s):  
B Venkata Krishnaveni ◽  
K Suresh Reddy ◽  
P Ramana Reddy

Author(s):  
Miguel Martínez del Horno ◽  
Cristina Romero-González ◽  
Luis Orozco-Barbosa ◽  
Ismael García-Varea

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chong Han ◽  
Wenjing Xun ◽  
Lijuan Sun ◽  
Zhaoxiao Lin ◽  
Jian Guo

Wi-Fi-based indoor localization has received extensive attention in wireless sensing. However, most Wi-Fi-based indoor localization systems have complex models and high localization delays, which limit the universality of these localization methods. To solve these problems, a depthwise separable convolution-based passive indoor localization system (DSCP) is proposed. DSCP is a lightweight fingerprint-based localization system that includes an offline training phase and an online localization phase. In the offline training phase, the indoor scenario is first divided into different areas to set training locations for collecting CSI. Then, the amplitude differences of these CSI subcarriers are extracted to construct location fingerprints, thereby training the convolutional neural network (CNN). In the online localization phase, CSI data are first collected at the test locations, and then, the location fingerprint is extracted and finally fed to the trained network to obtain the predicted location. The experimental results show that DSCP has a short training time and a low localization delay. DSCP achieves a high localization accuracy, above 97%, and a small median localization distance error of 0.69 m in typical indoor scenarios.


2022 ◽  
pp. 123-145
Author(s):  
Pelin Yildirim Taser ◽  
Vahid Khalilpour Akram

The GPS signals are not available inside the buildings; hence, indoor localization systems rely on indoor technologies such as Bluetooth, WiFi, and RFID. These signals are used for estimating the distance between a target and available reference points. By combining the estimated distances, the location of the target nodes is determined. The wide spreading of the internet and the exponential increase in small hardware diversity allow the creation of the internet of things (IoT)-based indoor localization systems. This chapter reviews the traditional and machine learning-based methods for IoT-based positioning systems. The traditional methods include various distance estimation and localization approaches; however, these approaches have some limitations. Because of the high prediction performance, machine learning algorithms are used for indoor localization problems in recent years. The chapter focuses on presenting an overview of the application of machine learning algorithms in indoor localization problems where the traditional methods remain incapable.


Sci ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 7 ◽  
Author(s):  
Mickaël Delamare ◽  
Remi Boutteau ◽  
Xavier Savatier ◽  
Nicolas Iriart

Many applications in the context of Industry 4.0 require precise localization. However, indoor localization remains an open problem, especially in complex environments such as industrial environments. In recent years, we have seen the emergence of Ultra WideBand (UWB) localization systems. The aim of this article is to evaluate the performance of a UWB system to estimate the position of a person moving in an indoor environment. To do so, we implemented an experimental protocol to evaluate the accuracy of the UWB system both statically and dynamically. The UWB system is compared to a ground truth obtained by a motion capture system with a millimetric accuracy.


Sign in / Sign up

Export Citation Format

Share Document