A Fuzzy Deep Learning Approach to Health-Related Text Classification

Author(s):  
Nasser Ghadiri ◽  
Ali Ghadiri ◽  
Afrooz Sheikholeslami
2018 ◽  
Vol 25 (10) ◽  
pp. 1274-1283 ◽  
Author(s):  
Abeed Sarker ◽  
Maksim Belousov ◽  
Jasper Friedrichs ◽  
Kai Hakala ◽  
Svetlana Kiritchenko ◽  
...  

AbstractObjectiveWe executed the Social Media Mining for Health (SMM4H) 2017 shared tasks to enable the community-driven development and large-scale evaluation of automatic text processing methods for the classification and normalization of health-related text from social media. An additional objective was to publicly release manually annotated data.Materials and MethodsWe organized 3 independent subtasks: automatic classification of self-reports of 1) adverse drug reactions (ADRs) and 2) medication consumption, from medication-mentioning tweets, and 3) normalization of ADR expressions. Training data consisted of 15 717 annotated tweets for (1), 10 260 for (2), and 6650 ADR phrases and identifiers for (3); and exhibited typical properties of social-media-based health-related texts. Systems were evaluated using 9961, 7513, and 2500 instances for the 3 subtasks, respectively. We evaluated performances of classes of methods and ensembles of system combinations following the shared tasks.ResultsAmong 55 system runs, the best system scores for the 3 subtasks were 0.435 (ADR class F1-score) for subtask-1, 0.693 (micro-averaged F1-score over two classes) for subtask-2, and 88.5% (accuracy) for subtask-3. Ensembles of system combinations obtained best scores of 0.476, 0.702, and 88.7%, outperforming individual systems.DiscussionAmong individual systems, support vector machines and convolutional neural networks showed high performance. Performance gains achieved by ensembles of system combinations suggest that such strategies may be suitable for operational systems relying on difficult text classification tasks (eg, subtask-1).ConclusionsData imbalance and lack of context remain challenges for natural language processing of social media text. Annotated data from the shared task have been made available as reference standards for future studies (http://dx.doi.org/10.17632/rxwfb3tysd.1).


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 171548-171558 ◽  
Author(s):  
Jiaying Wang ◽  
Yaxin Li ◽  
Jing Shan ◽  
Jinling Bao ◽  
Chuanyu Zong ◽  
...  

2021 ◽  
Vol 2115 (1) ◽  
pp. 012042
Author(s):  
S Premanand ◽  
Sathiya Narayanan

Abstract The primary objective of this particular paper is to classify the health-related data without feature extraction in Machine Learning, which hinder the performance and reliability. The assumption of our work will be like, can we able to get better result for health-related data with the help of Tree based Machine Learning algorithms without extracting features like in Deep Learning. This study performs better classification with Tree based Machine Learning approach for the health-related medical data. After doing pre-processing, without feature extraction, i.e., from raw data signal with the help of Machine Learning algorithms we are able to get better results. The presented paper which has better result even when compared to some of the advanced Deep Learning architecture models. The results demonstrate that overall classification accuracy of Random Forest, XGBoost, LightGBM and CatBoost, Tree-based Machine Learning algorithms for normal and abnormal condition of the datasets was found to be 97.88%, 98.23%, 98.03% and 95.57% respectively.


2020 ◽  
Vol 44 ◽  
pp. 101060 ◽  
Author(s):  
Weili Fang ◽  
Hanbin Luo ◽  
Shuangjie Xu ◽  
Peter E.D. Love ◽  
Zhenchuan Lu ◽  
...  

2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


Sign in / Sign up

Export Citation Format

Share Document