An Improved CNN-LSTM Model Compression Pruning Algorithm

Author(s):  
Jin Wu ◽  
Lei Wang ◽  
Yu Wang
Information ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 264
Author(s):  
Jinghan Wang ◽  
Guangyue Li ◽  
Wenzhao Zhang

The powerful performance of deep learning is evident to all. With the deepening of research, neural networks have become more complex and not easily generalized to resource-constrained devices. The emergence of a series of model compression algorithms makes artificial intelligence on edge possible. Among them, structured model pruning is widely utilized because of its versatility. Structured pruning prunes the neural network itself and discards some relatively unimportant structures to compress the model’s size. However, in the previous pruning work, problems such as evaluation errors of networks, empirical determination of pruning rate, and low retraining efficiency remain. Therefore, we propose an accurate, objective, and efficient pruning algorithm—Combine-Net, introducing Adaptive BN to eliminate evaluation errors, the Kneedle algorithm to determine the pruning rate objectively, and knowledge distillation to improve the efficiency of retraining. Results show that, without precision loss, Combine-Net achieves 95% parameter compression and 83% computation compression on VGG16 on CIFAR10, 71% of parameter compression and 41% computation compression on ResNet50 on CIFAR100. Experiments on different datasets and models have proved that Combine-Net can efficiently compress the neural network’s parameters and computation.


Author(s):  
Yijue Wang ◽  
Chenghong Wang ◽  
Zigeng Wang ◽  
Shanglin Zhou ◽  
Hang Liu ◽  
...  

The large model size, high computational operations, and vulnerability against membership inference attack (MIA) have impeded deep learning or deep neural networks (DNNs) popularity, especially on mobile devices. To address the challenge, we envision that the weight pruning technique will help DNNs against MIA while reducing model storage and computational operation. In this work, we propose a pruning algorithm, and we show that the proposed algorithm can find a subnetwork that can prevent privacy leakage from MIA and achieves competitive accuracy with the original DNNs. We also verify our theoretical insights with experiments. Our experimental results illustrate that the attack accuracy using model compression is up to 13.6% and 10% lower than that of the baseline and Min-Max game, accordingly.


Author(s):  
LAKSHMI PRANEETHA

Now-a-days data streams or information streams are gigantic and quick changing. The usage of information streams can fluctuate from basic logical, scientific applications to vital business and money related ones. The useful information is abstracted from the stream and represented in the form of micro-clusters in the online phase. In offline phase micro-clusters are merged to form the macro clusters. DBSTREAM technique captures the density between micro-clusters by means of a shared density graph in the online phase. The density data in this graph is then used in reclustering for improving the formation of clusters but DBSTREAM takes more time in handling the corrupted data points In this paper an early pruning algorithm is used before pre-processing of information and a bloom filter is used for recognizing the corrupted information. Our experiments on real time datasets shows that using this approach improves the efficiency of macro-clusters by 90% and increases the generation of more number of micro-clusters within in a short time.


2010 ◽  
Vol 22 (6) ◽  
pp. 1042-1049 ◽  
Author(s):  
Jinde Wang ◽  
Xiaoyan Li ◽  
Lidan Shou ◽  
Gang Chen

2020 ◽  
Vol 34 (04) ◽  
pp. 6623-6630
Author(s):  
Li Yang ◽  
Zhezhi He ◽  
Deliang Fan

Deep convolutional neural network (DNN) has demonstrated phenomenal success and been widely used in many computer vision tasks. However, its enormous model size and high computing complexity prohibits its wide deployment into resource limited embedded system, such as FPGA and mGPU. As the two most widely adopted model compression techniques, weight pruning and quantization compress DNN model through introducing weight sparsity (i.e., forcing partial weights as zeros) and quantizing weights into limited bit-width values, respectively. Although there are works attempting to combine the weight pruning and quantization, we still observe disharmony between weight pruning and quantization, especially when more aggressive compression schemes (e.g., Structured pruning and low bit-width quantization) are used. In this work, taking FPGA as the test computing platform and Processing Elements (PE) as the basic parallel computing unit, we first propose a PE-wise structured pruning scheme, which introduces weight sparsification with considering of the architecture of PE. In addition, we integrate it with an optimized weight ternarization approach which quantizes weights into ternary values ({-1,0,+1}), thus converting the dominant convolution operations in DNN from multiplication-and-accumulation (MAC) to addition-only, as well as compressing the original model (from 32-bit floating point to 2-bit ternary representation) by at least 16 times. Then, we investigate and solve the coexistence issue between PE-wise Structured pruning and ternarization, through proposing a Weight Penalty Clipping (WPC) technique with self-adapting threshold. Our experiment shows that the fusion of our proposed techniques can achieve the best state-of-the-art ∼21× PE-wise structured compression rate with merely 1.74%/0.94% (top-1/top-5) accuracy degradation of ResNet-18 on ImageNet dataset.


2013 ◽  
Vol 846-847 ◽  
pp. 1304-1307
Author(s):  
Ye Wang ◽  
Yan Jia ◽  
Lu Min Zhang

Mining partial orders from sequence data is an important data mining task with broad applications. As partial orders mining is a NP-hard problem, many efficient pruning algorithm have been proposed. In this paper, we improve a classical algorithm of discovering frequent closed partial orders from string. For general sequences, we consider items appearing together having equal chance to calculate the detecting matrix used for pruning. Experimental evaluations from a real data set show that our algorithm can effectively mine FCPO from sequences.


Sign in / Sign up

Export Citation Format

Share Document