Crack Detection from Weld Bend Test Images Using R-CNN

2021 ◽  
pp. 289-298
Author(s):  
Shigeru Kato ◽  
Takanori Hino ◽  
Shunsaku Kume ◽  
Hajime Nobuhara
Keyword(s):  
1997 ◽  
Vol 9 (2) ◽  
pp. 59-79 ◽  
Author(s):  
J. Mattsson ◽  
A. J. Niklasson ◽  
A. Eriksson

Author(s):  
S. P. Bersenev ◽  
E. M. Slobtsova

Achievements in the area of automated ultrasonic control of quality of rails, solid-rolled wheels and tyres, wheels magnetic powder crack detection, carried out at JSC EVRAZ NTMK. The 100% nondestructive control is accomplished by automated control in series at two ultrasonic facilities RWI-01 and four facilities УМКК-1 of magnetic powder control, installed into the exit control line in the wheel-tyre shop. Diagram of location, converters displacement and control operations in the process of control at the facility RWI-01 presented, as well as the structural diagram of the facility УМКК-1. The automated ultrasonic control of rough tyres is made in the tyres control line of the wheel-tyre shop at the facility УКБ-1Д. The facility enables to control internal defects of tyres in radial, axis and circular directions of radiation. Possibilities of the facility УКБ-1Д software were shown. Nondestructive control of railway rails is made at two facilities, comprising the automated control line of the rail and structural shop. The УКР-64Э facility of automated ultrasonic rails control is intended to reveal defects in the area of head, web and middle part of rail foot by pulse echo-method with a immersion acoustic contact. The diagram of rail P65 at the facility УКР-64Э control presented. To reveal defects of the macrostructure in the area of rail head and web by mirror-shadow method, an ultrasonic noncontact electromagnetic-acoustic facility is used. It was noted, that implementation of the 100% nondestructive control into the technology of rolled stuff production enabled to increase the quality of products supplied to customers and to increase their competiveness.


2017 ◽  
Vol 1 (20) ◽  
pp. 63-74 ◽  
Author(s):  
Arkadiusz Rychlik ◽  
Krzysztof Ligier

This paper discusses the method used to identify the process involving fatigue cracking of samples on the basis of selected vibration signal characteristics. Acceleration of vibrations has been chosen as a diagnostic signal in the analysis of sample cross section. Signal characteristics in form of change in vibration amplitudes and corresponding changes in FFT spectrum have been indicated for the acceleration. The tests were performed on a designed setup, where destruction process was caused by the force of inertia of the sample. Based on the conducted tests, it was found that the demonstrated sample structure change identification method may be applied to identify the technical condition of the structure in the aspect of loss of its continuity and its properties (e.g.: mechanical and fatigue cracks). The vibration analysis results have been verified by penetration and visual methods, using a scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document