fatigue cracking
Recently Published Documents


TOTAL DOCUMENTS

1016
(FIVE YEARS 264)

H-INDEX

36
(FIVE YEARS 7)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Ran Zhang ◽  
Haoxiang Wang ◽  
Jie Ji ◽  
Hainian Wang

The purpose of this study is to explore the viscoelastic properties, rutting resistance, and fatigue resistance of waste wood-based biochar-modified asphalt. The biochar with 2%, 4%, and 8% mixing amounts and two kinds of particle size, 75–150 μm and <75 μm, were used as modifiers of petroleum asphalt. Meanwhile, in the control group, a graphite modifier with a particle size of 0–75 μm and mixing amount of 4% was used for comparison. Aged asphalts were obtained in the laboratory by the Rolling Thin Film Oven (RTFO) test and the Pressure Aging Vessel (PAV) test. The viscoelastic properties, rutting resistance, and fatigue resistance of biochar-modified asphalt were evaluated by phase angle, critical high temperature, and fatigue cracking index by the Dynamic Shear Rheometer (DSR) test. In addition, the micromorphology of biochar and graphite was compared and observed by using the scanning electron microscope (SEM). The results show that increasing the mixing amount of biochar gave a higher elastic property and significantly better rutting resistance of the modified asphalt at high temperature. Compared with graphite, the biochar has a rougher surface and more pores, which provides its higher specific surface area. Therefore, it is easier to bond with asphalt to form a skeleton network structure, then forming a more stable biochar–asphalt base structure. In this way, compared to graphite-modified asphalt, biochar-modified asphalt showed better resistance to rutting at high temperature, especially for the asphalt modified with biochar of small particle size. The critical high temperature T(G*/sinδ) of 4% Gd, 4% WD, and 4% Wd was 0.31 °C, 1.57 °C, and 2.92 °C higher than that of petroleum bitumen. In addition, the biochar asphalt modified with biochar of small particle size had significantly better fatigue cracking resistance than the asphalt modified with biochar of large particle size. The fatigue cracking indexes for 2% Wd, 4% Wd, and 8% Wd were 29.20%, 7.21%, and 37.19% lower by average than those for 2% WD, 4% WD, and 8% WD at 13–37 °C. Therefore, the waste wood biochar could be used as the modifier for petroleum asphalt. After the overall consideration, the biochar-modified asphalt with 2%–4% mixing amount and particle size less than 75 μm was recommended.


Author(s):  
Yan Zhang ◽  
Yong Deng ◽  
Xianming Shi

AbstractThis study established a systematic simulation framework to predict the anti-icing longevity of a thin overlay of asphalt pavement with salt-storage additive (APSSA). The water and chloride transport in the overlay when subjected to varying precipitation, temperature, thermal cracking, and fatigue cracking over time were modeled using a Finite Element Method based software. The simulation included two parts: water transport followed by chloride transport. Water transport that obeys the law of conservation of mass was modeled using the phase transport in porous media (phtr) interface of COMSOL, while chloride transport based on Fick’s second law was modeled with the transport of diluted species (tds) interface. The simulation results show that the anti-icing function of a 16-mm thick overlay was fully effective in 2 years and 5 years for the minimum pavement temperature above -3.4 °C and -2.4 °C, respectively. These two pavement temperatures are equivalent to 97.4-percentile and 96.3-percentile of historical hourly pavement temperature near Pullman, Washington. Graphical abstract


2022 ◽  
Vol 2153 (1) ◽  
pp. 012001
Author(s):  
J C Ruge ◽  
H A Rondon-Quintana ◽  
J G Bastidas-Martínez

Abstract Fatigue cracking by loading is one of the main mechanisms of damage to asphalt mixtures in service. Several studies worldwide have been conducted to try to understand the response that hot-mix asphalt undergo under this mechanism of damage. Despite the above, the fatigue phenomenon in asphalt mixtures is still not fully understood. The current research hypothesizes that the response under repeated loading of asphalt mixtures in fatigue tests can be more clearly understood through the one obtained under monotonic loading. For this reason, this study presents the results of the first phase of the research in which beams of asphalt mixtures were subjected to flexion using monotonic loads. The above, to correlate the evaluated properties with those obtained in a second phase where the response of the beams under repeated load (fatigue) will be measured. Beams made of two hot-mix asphalt mixes, two asphalt contents, and two different thicknesses were subjected to flexural strength tests. From the tests, the modulus of rupture, the maximum monotonic load that supports the beams in the failure state, the displacement in the failure state, and the relation between load and displacement were obtained. As a general conclusion of the study, it was obtained that the response experienced by the beams subjected to monotonic load has a broad correlation with the reported in the reference literature.


Author(s):  
Xiaohong Li ◽  
Qin Sun ◽  
Hongna Dui

Fatigue damage of a whole structure with multiple similar fatigue hazardous detail parts is unclear. This paper focuses on the concept of quantified fatigue damage for the structure with similar fatigue hazardous detail parts by using the probability method and fatigue failure probability of the severe load spectrum. The probability criterion and calculation method of equivalent damage with different load spectra were proposed. The fatigue life probability distribution of the severe load spectrum was analyzed, and the acceleration ratio was defined by the similar details number of fatigue cracking in combination with the fatigue failure probability characteristics of the severe load spectrum. The results show that there is good agreement between the similar details number range of fatigue cracking in two load spectra, which means they are considered to be equivalent. The ratio of the sum of two similar details number ranges is used as acceleration ratio to evaluate the severe load spectrum. The application of this study in the statistical sense of engineering structure fatigue failure is more convincing.


CivilEng ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 21-34
Author(s):  
Hossein Noorvand ◽  
Samuel Castro Brockman ◽  
Michael Mamlouk ◽  
Kamil Kaloush

Fiber-reinforced asphalt concrete (FRAC) was tested using limestone, PG 64-22 binder, and 20% reclaimed asphalt pavement (RAP). After mixing fibers with different lengths and dosages, they were extracted and recovered to evaluate their dispersion in the FRAC. The uniaxial fatigue test, IDEAL CT test, and flow number test were performed on FRAC with different fiber lengths and asphalt contents. The balanced mix design (BMD) approach was then used to analyze the uniaxial and flow number test results in order to evaluate the effect of aramid fibers on fatigue and rutting resistance of the pavement. The dispersion test showed that the 19 mm and 10 mm aramid fibers at a dosage rate of 0.5 g/kg provided the best dispersion. The 19 mm fibers showed better performance test results than the 10 mm and 38 mm fibers. The BMD approach provided ranges of asphalt contents to produce mixes with certain resistances to fatigue and rutting. The BMD approach also demonstrated the effect of fibers with different lengths on increasing the resistance to fatigue and rutting. The study concluded that the 19 mm fibers with a dosage of 0.5 g/kg produce best results. The BMD approach is a good tool that can be used to refine the mix ingredients, including additives such as fibers, in order to optimize pavement resistance to various distresses such as fatigue cracking and rutting.


2021 ◽  
Vol 11 (24) ◽  
pp. 12074
Author(s):  
Sang-Hyeok Kim ◽  
Xiao-Jun Fang ◽  
Yeun-Chul Park ◽  
Hyoung-Bo Sim

Rail clips are essential components of rail fastening systems that clamp the rails to sleepers. Fatigue damage of rail clips has been recently reported in railway lines. However, there has been a lack of research investigating this fatigue issue. The KR-type rail fastening system has been recently developed and used in some domestic railways. This study aimed at evaluating the structural behavior and fatigue performance of the KR-type rail clip. The assembly test performed in the laboratory showed that the stresses induced in the rail clips after tightening, particularly at the stress concentration locations, exceeded the yield stress, indicating that the rail clip could be vulnerable to fatigue cracking when combined with the stress range during repeated trainloads. The finite element analysis results, which revealed a good correlation with the experiments, were used to evaluate the fatigue performance of the rail clip by adopting the modified Goodman fatigue criteria. The fatigue evaluation results indicated that when the vertical rail displacement during train operation exceeded 2 mm, the rail clips could potentially suffer from fatigue failure.


2021 ◽  
Author(s):  
Earl Lee Toups ◽  
Russell James Morrison ◽  
Russell John Harper

Abstract The maturation of North Sea platform jackets coupled with high fatigue stresses, fabrication defects, extensive usage, and low-redundancy design eventually result in fatigue cracking. The high sea states in the North Sea further exacerbate the problem. If not closely monitored, fatigue cracks can propagate into and around the circumference of a brace relatively quickly—ultimately leading to brace severance. When confronted with a loss of structural integrity, operators have two options: conduct expensive subsea repairs or decommission the asset. Realising a market gap, DCN Diving has explored alternate repair strategies, leading to the development of the DCN-patent pending µ-Habitat welding system. The µ-Habitat makes it possible to respond quicker, execute subsea repairs faster and guarantee quality at a fraction of the cost of bespoke or modular habitats. Through size reduction, it is possible to reduce the fabrication, production, and handling costs of µ-Habitat. Furthermore, the smaller footprint reduces installation time while simplifying sealing and de-watering offshore, saving time and money. Using a combination of product development facilitators and process improvement methodologies, such as AGILE, SCRUM, and design thinking, reduces the preparation time, making the system incredibly responsive yet flexible. Additionally, using an experienced and dedicated project team in combination with standardised products further minimises the response time to execute a repair. A dry environment, pre-heating, in-process cleaning/grinding, and unrestricted access are fundamental to ensuring high-quality welds. In addition, prototyping, extensive function testing, and mock-ups validate the habitat design before commissioning via factory acceptance testing and mobilisation to guarantee the failsafe performance of the µ-Habitat offshore. The µ-Habitat can play a crucial role in the overall life extension strategy for any offshore structure, ultimately minimising cost, risk and production downtime associated with future subsea repairs.


2021 ◽  
Author(s):  
Dahuan Zhu ◽  
Changjun Li ◽  
Binfu Gao ◽  
Rui Ding ◽  
Bao Guo Wang ◽  
...  

Abstract Leading-edge-induced thermal loading effect due to assembly tolerance between neighboring castellated plasma facing components is a critical issue in fusion devices. Actively-cooled ITER-like W/Cu monoblocks were successfully installed for upper divertor target in EAST which significantly increases the ability of divertor power exhaust. The misalignment between neighboring monoblocks was formed inevitably during manufacturing and assembly processes, providing a possibility to demonstrate the leading-edge-induced thermal damages. Indeed, the leading-edge-induced melting phenomena of W/Cu monoblocks on upper divertor targets were observed during plasma discharges with a large number of droplets ejected from divertor target using CCD camera, which were also identified at the leading edges of W/Cu monoblocks. Not only that, but also many macro cracks with width of ~70 m and depth of < 5 mm along radial and toroidal directions were also found universally at the leading edges of W/Cu monoblocks by post-mortem inspection after plasma campaigns. Thermal-mechanical analysis by means of the finite element simulation demonstrated that the maximum temperature could reach W melting point under current projected heat load of ~3 MWm-2 on flat top surface with large misalignment up to 3 mm at the leading edges. Meanwhile, the high temperature also induced high thermal stress and strain concentration at the center of leading edges, at which the thermal fatigue cracking could be initially generated. Such kind of cracks at leading edges on W/Cu monoblocks may be unavoidable due to the long-term pulsed fatigue effects. However, the influence of these cracks seems to be acceptable thanks to the limited propagated distance by self-castellation effect, which still need long-term tracking. The in-situ leading-edge-induced damages of melting and cracking on W/Cu monoblocks of EAST upper divertor target provide significant reference to understand the leading-edge-induced thermal effect in ITER and future fusion devices.


2021 ◽  
pp. 130120
Author(s):  
Haichuan Jia ◽  
Huaxin Chen ◽  
Yanping Sheng ◽  
Jiandang Meng ◽  
Shian Cui ◽  
...  

2021 ◽  
Vol 147 (4) ◽  
pp. 04021056
Author(s):  
Nirmal Dhakal ◽  
Mostafa Elseifi ◽  
Imad L. Al-Qadi ◽  
Tyson Rupnow

Sign in / Sign up

Export Citation Format

Share Document