Deep Neural Network Architecture for Low-Dimensional Embedding and Classification of Cosmic Ray Images Obtained from CMOS Cameras

2021 ◽  
pp. 307-316
Author(s):  
Tomasz Hachaj ◽  
Marcin Piekarczyk ◽  
Łukasz Bibrzycki
2020 ◽  
pp. 104-117
Author(s):  
O.S. Amosov ◽  
◽  
S.G. Amosova ◽  
D.S. Magola ◽  
◽  
...  

The task of multiclass network classification of computer attacks is given. The applicability of deep neural network technology in problem solving has been considered. Deep neural network architecture was chosen based on the strategy of combining a set of convolution and recurrence LSTM layers. Op-timization of neural network parameters based on genetic algorithm is proposed. The presented results of modeling show the possibility of solving the network classification problem in real time.


Author(s):  
Nam D Nguyen ◽  
Ting Jin ◽  
Daifeng Wang

Abstract Summary Population studies such as genome-wide association study have identified a variety of genomic variants associated with human diseases. To further understand potential mechanisms of disease variants, recent statistical methods associate functional omic data (e.g. gene expression) with genotype and phenotype and link variants to individual genes. However, how to interpret molecular mechanisms from such associations, especially across omics, is still challenging. To address this problem, we developed an interpretable deep learning method, Varmole, to simultaneously reveal genomic functions and mechanisms while predicting phenotype from genotype. In particular, Varmole embeds multi-omic networks into a deep neural network architecture and prioritizes variants, genes and regulatory linkages via biological drop-connect without needing prior feature selections. Availability and implementation Varmole is available as a Python tool on GitHub at https://github.com/daifengwanglab/Varmole. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document