Euclid’s Elements: Geometric Figures in the Copy of the Yuso Monastery, in San Millán de la Cogolla (Spain)

Author(s):  
Sergio Rojo-Vea ◽  
Jacinto Santamaría-Peña ◽  
Félix Sanz-Adán
Author(s):  
O. M. Korchazhkina

The article presents a methodological approach to studying iterative processes in the school course of geometry, by the example of constructing a Koch snowflake fractal curve and calculating a few characteristics of it. The interactive creative environment 1C:MathKit is chosen to visualize the method discussed. By performing repetitive constructions and algebraic calculations using ICT tools, students acquire a steady skill of work with geometric objects of various levels of complexity, comprehend the possibilities of mathematical interpretation of iterative processes in practice, and learn how to understand the dialectical unity between finite and infinite parameters of flat geometric figures. When students are getting familiar with such contradictory concepts and categories, that replenishes their experience of worldview comprehension of the subject areas they study through the concept of “big ideas”. The latter allows them to take a fresh look at the processes in the world around. The article is a matter of interest to schoolteachers of computer science and mathematics, as well as university scholars who teach the course “Concepts of modern natural sciences”.


2019 ◽  
Vol 1 (1) ◽  
pp. 22
Author(s):  
Carla Marilia Ayala Valladares ◽  
Juana Maria Cruz Montero ◽  
Angel Saldarriaga Melgar

The main purpose of the research was to determine the effects of the program of ludic activities for the learning of geometry in children of five years in all their dimensions orientation and location, geometric shapes and measurement, through its components: location in space, identify locations and positions of objects, identify and characterize geometric figures and communicate the qualities of these, likewise identify, classify magnitudes and use various measuring instruments. The type of research was applied, with a quasi-experimental design, the population was constituted by 103 children, and a non-probabilistic sample was used for convenience with a sample of 51 children, divided into two control and experimental groups. The geometry instrument was used to collect information. The favorable effect of the program of playful activities in the learning of geometric notions in children of initial - Callao, 2018 was determined.


1998 ◽  
Vol 11 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Luigi Trojano ◽  
Dario Grossi

We report on a patient affected by selective drawing disabilities. The patient could correctly reproduce and draw simple geometric figures on request, but when he tried to reproduce more complex drawings or to draw common objects he performed very poorly. To identify the cognitive impairment in this patient, we adopted two test batteries based on recent information-processing models of drawing. Results showed that the patient’s drawing disabilities were independent of visuo-perceptual and executive impairments. These findings support recent cognitive models of drawing abilities: some intermediate stages of drawing exist at which information is processed to prepare and guide motor output, and which may be selectively disrupted after discrete cerebral lesions.


Author(s):  
Wing-Kwong Wong ◽  
Sheng-Kai Yin ◽  
Chang-Zhe Yang

<p>This paper presents a tool for drawing dynamic geometric figures by understanding the texts of geometry problems. With the tool, teachers and students can construct dynamic geometric figures on a web page by inputting a geometry problem in natural language. First we need to build the knowledge base for understanding geometry problems. With the help of the knowledge base engine InfoMap, geometric concepts are extracted from an input text. The concepts are then used to output a multistep JavaSketchpad script, which constructs the dynamic geometry figure on a web page. Finally, the system outputs the script as an HTML document that can be visualized and read with an internet browser. Furthermore, a preliminary evaluation of the tool showed that it produced correct dynamic geometric figures for over 90% of problems from textbooks. With such high accuracy, the system produced by this study can support distance learning for geometry students as well as distance learning in producing geometry content for instructors.<br /><br /></p>


2001 ◽  
Vol 21 (11) ◽  
pp. 1330-1341 ◽  
Author(s):  
Hélène Gros ◽  
Kader Boulanouar ◽  
Gérard Viallard ◽  
Emmanuelle Cassol ◽  
Pierre Celsis

Functional neuroimaging studies have suggested a specific role of the extrastriate cortex in letter string and visual word form processing. However, this region has been shown to be involved in object recognition and its specificity for the processing of linguistic stimuli may be questioned. The authors used an event-related functional magnetic resonance imaging design with category priming to record the response elicited by the passive viewing of single letters, geometric figures, and of the categorically ambiguous stimulus “O” that pertains to both sets of familiar symbols. Bilateral activations in the extrastriate cortex were found, with a left predominance particularly pronounced for the ambiguous stimulus. Individual analysis of spatial extent and signal intensity showed a priming × stimulus × hemisphere interaction. When primed by the congruous categoric set, a bilateral decrease in activation was observed for letters and geometric figures. The ambiguous stimulus behaved as a letter for the left hemisphere, with decreased activation when primed by letters, whereas in the right hemisphere, an adaptation effect occurred when primed by geometric figures. These priming effects suggest that, for the ambiguous stimulus, letter processing was systematically involved in the left extrastriate cortex. The current results support the existence of a neural substrate for the abstract category of letters.


Sign in / Sign up

Export Citation Format

Share Document