A Comprehensive Framework Integrating Attribute-Based Access Control and Privacy Protection Models

Author(s):  
Anh Tuan Truong
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Qi Gao ◽  
Junwei Zhang ◽  
Jianfeng Ma ◽  
Chao Yang ◽  
Jingjing Guo ◽  
...  

With the fast development of Logistics Internet of Things and smart devices, the security of express information processed by mobile devices in Logistics Internet of Things has attracted much attention. However, the existing secure express schemes only focus on privacy protection of personal information but do not consider the security of the logistics information against couriers with malicious mobile devices. For example, a privacy-preserving delivery path should be required in order to prevent the privacy leakage in the express delivery procedure. Therefore, besides the security of personal information, the privacy protection of logistics information and authentication of mobile devices used in express company are important to security in Logistics Internet of Things. In this paper, we propose a secure logistics information scheme LIP-PA to provide privacy protection of both personal information and logistics information. First, we define the basic requirements of Logistics Internet of Things. Then, using attribute-based encryption and position-based key exchange, we propose a logistics information privacy protection scheme with position and attribute-based access control for mobile devices. The analysis results show that our scheme satisfies the defined requirements. Finally, the performance of our scheme is evaluated and the experiment results show that our scheme is efficient and feasible for mobile devices in real parcel delivery scenario.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yingwen Chen ◽  
Linghang Meng ◽  
Huan Zhou ◽  
Guangtao Xue

The rapid development of wearable sensors and the 5G network empowers traditional medical treatment with the ability to collect patients’ information remotely for monitoring and diagnosing purposes. Meanwhile, the health-related mobile apps and devices also generate a large amount of medical data, which is critical for promoting disease research and diagnosis. However, medical data is too sensitive to share, which is also a common issue for IoT (Internet of Things) data. The traditional centralized cloud-based medical data sharing schemes have to rely on a single trusted third party. Therefore, the schemes suffer from single-point failure and lack of privacy protection and access control for the data. Blockchain is an emerging technique to provide an approach for managing data in a decentralized manner. Especially, the blockchain-based smart contract technique enables the programmability for participants to access the data. All the interactions are authenticated and recorded by the other participants of the blockchain network, which is tamper resistant. In this paper, we leverage the K-anonymity and searchable encryption techniques and propose a blockchain-based privacy-preserving scheme for medical data sharing among medical institutions and data users. To be specific, the consortium blockchain, Hyperledger Fabric, is adopted to allow data users to search for encrypted medical data records. The smart contract, i.e., the chaincode, implements the attribute-based access control mechanisms to guarantee that the data can only be accessed by the user with proper attributes. The K-anonymity and searchable encryption ensure that the medical data is shared without privacy leaking, i.e., figuring out an individual patient from queries. We implement a prototype system using the chaincode of Hyperledger Fabric. From the functional perspective, security analysis shows that the proposed scheme satisfies security goals and precedes others. From the performance perspective, we conduct experiments by simulating different numbers of medical institutions. The experimental results demonstrate that the scalability and performance of our scheme are practical.


2020 ◽  
Author(s):  
Amruta Chavan ◽  
Nilesh Marathe ◽  
Dipti Jadhav

Author(s):  
Heitor Henrique de Paula Moraes Costa ◽  
Aleteia Patricia Favacho de Araujo ◽  
Joao Jose Costa Gondim ◽  
Maristela Terto de Holanda ◽  
Maria Emilia Machado Telles Walter

Sign in / Sign up

Export Citation Format

Share Document