Enhanced Ant Colony Optimization Algorithm for Optimizing Load Balancing in Cloud Computing Platform

Author(s):  
A. Daniel ◽  
N. Partheeban ◽  
Srinivasan Sriramulu
2019 ◽  
Vol 7 (2) ◽  
pp. 9-20 ◽  
Author(s):  
Selvakumar A. ◽  
Gunasekaran G.

Cloud computing is a model for conveying data innovation benefits in which assets are recovered from the web through online devices and applications, instead of an immediate association with a server. Clients can set up and boot the required assets and they need to pay just for the required assets. Subsequently, later on giving a component to a productive asset administration and the task will be a vital target of Cloud computing. Load balancing is one of the major concerns in cloud computing, and the main purpose of it is to satisfy the requirements of users by distributing the load evenly among all servers in the cloud to maximize the utilization of resources, to increase throughput, provide good response time and to reduce energy consumption. To optimize resource allocation and ensure the quality of service, this article proposes a novel approach for load-balancing based on the enhanced ant colony optimization.


2012 ◽  
Author(s):  
Ku Ruhana Ku-Mahamud ◽  
Aniza Mohamed Din

Managing resources in grid computing system is complicated due to the distributed and heterogeneous nature of the resources. This research proposes an enhancement of the ant colony optimization algorithm that caters for dynamic scheduling and load balancing in the grid computing system. The proposed algorithm is known as the enhance ant colony optimization (EACO). The algorithm consists of three new mechanisms that organize the work of an ant colony i.e. initial pheromone value mechanism, resource selection mechanism and pheromone update mechanism. The resource allocation problem is modelled as a graph that can be used by the ant to deliver its pheromone.This graph consists of four types of vertices which are job, requirement, resource and capacity that are used in constructing the grid resource management element. The proposed EACO algorithm takes into consideration the capacity of resources and the characteristics of jobs in determining the best resource to process a job. EACO selects the resources based on the pheromone value on each resource which is recorded in a matrix form. The initial pheromone value of each resource for each job is calculated based on the estimated transmission time and execution time of a given job.Resources with high pheromone value are selected to process the submitted jobs. Global pheromone update is performed after the completion of processing the jobs in order to reduce the pheromone value of resources.A simulation environment was developed using Java programming to test the performance of the proposed EACO algorithm against other ant based algorithm, in terms of resource utilization. Experimental results show that EACO produced better grid resource management solution.


Sign in / Sign up

Export Citation Format

Share Document