End-to-End Anomaly Score Estimation for Contaminated Data via Adversarial Representation Learning

Author(s):  
Daoming Li ◽  
Jiahao Liu ◽  
Huangang Wang
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Luogeng Tian ◽  
Bailong Yang ◽  
Xinli Yin ◽  
Kai Kang ◽  
Jing Wu

In the past, most of the entity prediction methods based on embedding lacked the training of local core relationships, resulting in a deficiency in the end-to-end training. Aiming at this problem, we propose an end-to-end knowledge graph embedding representation method. It involves local graph convolution and global cross learning in this paper, which is called the TransC graph convolutional network (TransC-GCN). Firstly, multiple local semantic spaces are divided according to the largest neighbor. Secondly, a translation model is used to map the local entities and relationships into a cross vector, which serves as the input of GCN. Thirdly, through training and learning of local semantic relations, the best entities and strongest relations are found. The optimal entity relation combination ranking is obtained by evaluating the posterior loss function based on the mutual information entropy. Experiments show that this paper can obtain local entity feature information more accurately through the convolution operation of the lightweight convolutional neural network. Also, the maximum pooling operation helps to grasp the strong signal on the local feature, thereby avoiding the globally redundant feature. Compared with the mainstream triad prediction baseline model, the proposed algorithm can effectively reduce the computational complexity while achieving strong robustness. It also increases the inference accuracy of entities and relations by 8.1% and 4.4%, respectively. In short, this new method can not only effectively extract the local nodes and relationship features of the knowledge graph but also satisfy the requirements of multilayer penetration and relationship derivation of a knowledge graph.


2021 ◽  
pp. 1-38
Author(s):  
Wenya Wang ◽  
Sinno Jialin Pan

Abstract Nowadays, deep learning models have been widely adopted and achieved promising results on various application domains. Despite of their intriguing performance, most deep learning models function as black-boxes, lacking explicit reasoning capabilities and explanations, which are usually essential for complex problems. Take joint inference in information extraction as an example. This task requires the identification of multiple structured knowledge from texts, which is inter-correlated, including entities, events and the relationships between them. Various deep neural networks have been proposed to jointly perform entity extraction and relation prediction, which only propagate information implicitly via representation learning. However, they fail to encode the intensive correlations between entity types and relations to enforce their co-existence. On the other hand, some approaches adopt rules to explicitly constrain certain relational facts. However, the separation of rules with representation learning usually restrains the approaches with error propagation. Moreover, the pre-defined rules are inflexible and might bring negative effects when data is noisy. To address these limitations, we propose a variational deep logic network that incorporates both representation learning and relational reasoning via the variational EM algorithm. The model consists of a deep neural network to learn high-level features with implicit interactions via the self-attention mechanism and a relational logic network to explicitly exploit target interactions. These two components are trained interactively to bring the best of both worlds. We conduct extensive experiments ranging from fine-grained sentiment terms extraction, end-to-end relation prediction to end-to-end event extraction to demonstrate the effectiveness of our proposed method.


2022 ◽  
Vol 40 (3) ◽  
pp. 1-28
Author(s):  
Surong Yan ◽  
Kwei-Jay Lin ◽  
Xiaolin Zheng ◽  
Haosen Wang

Explicit and implicit knowledge about users and items have been used to describe complex and heterogeneous side information for recommender systems (RSs). Many existing methods use knowledge graph embedding (KGE) to learn the representation of a user-item knowledge graph (KG) in low-dimensional space. In this article, we propose a lightweight end-to-end joint learning framework for fusing the tasks of KGE and RSs at the model level. Our method proposes a lightweight KG embedding method by using bidirectional bijection relation-type modeling to enable scalability for large graphs while using self-adaptive negative sampling to optimize negative sample generating. Our method further generates the integrated views for users and items based on relation-types to explicitly model users’ preferences and items’ features, respectively. Finally, we add virtual “recommendation” relations between the integrated views of users and items to model the preferences of users on items, seamlessly integrating RS with user-item KG over a unified graph. Experimental results on multiple datasets and benchmarks show that our method can achieve a better accuracy of recommendation compared with existing state-of-the-art methods. Complexity and runtime analysis suggests that our method can gain a lower time and space complexity than most of existing methods and improve scalability.


Sign in / Sign up

Export Citation Format

Share Document