online signature verification
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 49)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 378
Author(s):  
Enrique Cantó Navarro ◽  
Rafael Ramos Lara ◽  
Mariano López García

This paper describes three different approaches for the implementation of an online signature verification system on a low-cost FPGA. The system is based on an algorithm, which operates on real numbers using the double-precision floating-point IEEE 754 format. The double-precision computations are replaced by simpler formats, without affecting the biometrics performance, in order to permit efficient implementations on low-cost FPGA families. The first approach is an embedded system based on MicroBlaze, a 32-bit soft-core microprocessor designed for Xilinx FPGAs, which can be configured by including a single-precision floating-point unit (FPU). The second implementation attaches a hardware accelerator to the embedded system to reduce the execution time on floating-point vectors. The last approach is a custom computing system, which is built from a large set of arithmetic circuits that replace the floating-point data with a more efficient representation based on fixed-point format. The latter system provides a very high runtime acceleration factor at the expense of using a large number of FPGA resources, a complex development cycle and no flexibility since it cannot be adapted to other biometric algorithms. By contrast, the first system provides just the opposite features, while the second approach is a mixed solution between both of them. The experimental results show that both the hardware accelerator and the custom computing system reduce the execution time by a factor ×7.6 and ×201 but increase the logic FPGA resources by a factor ×2.3 and ×5.2, respectively, in comparison with the MicroBlaze embedded system.


2021 ◽  
Vol 22 (4) ◽  
Author(s):  
Mohammad Saleem ◽  
Bence Kovari

In this paper, we propose an enhanced jk-nearest neighbor (jk-NN) classifier for online signature verification. After studying the algorithm's main parameters, we use four separate databases to present and evaluate each algorithm parameter. The results show that the proposed method can increase the verification accuracy by 0.73-10% compared to a traditional one class k-NN classifier. The algorithm has achieved reasonable accuracy for different databases, a 3.93% error rate when using the SVC2004 database, 2.6% for MCYT-100 database, 1.75% for the SigComp'11 database, and 6% for the SigComp'15 database.The proposed algorithm uses specifically chosen parameters and a procedure to pick the optimal value for K using only the signer's reference signatures, to build a practical verification system for real-life scenarios where only these signatures are available. By applying the proposed algorithm, the average error achieved was 8% for SVC2004, 3.26% for MCYT-100, 13% for SigComp'15, and 2.22% for SigComp'11.


2021 ◽  
Author(s):  
Mohammad Saleem ◽  
BenceKovari

Online signatures are one of the most commonly used biometrics. Several verification systems and public databases were presented in this field. This paper presents a combination of knearest neighbor and dynamic time warping algorithms as a verification system using the recently published DeepSignDB database. Our algorithm was applied on both finger and stylus input signatures which represent both office and mobile scenarios. The system was first tested on the development set of the database. It achieved an error rate of 6.04% for the stylus input signatures, 5.20% for the finger input signatures, and 6.00% for a combination of both types. The system was also applied to the evaluation set of the database and achieved very promising results, especially for finger input signatures.


Author(s):  
Mohammad Saleem ◽  
Bence Kovari

AbstractOnline signature verification considers signatures as time sequences of different measurements of the signing instrument. These signals are captured on digital devices and therefore consist of a discrete number of samples. To enrich or simplify this information, several verifiers employ resampling and interpolation as a preprocessing step to improve their results; however, their design decisions may be difficult to generalize. This study investigates the direct effect of the sampling rate of the input signals on the accuracy of online signature verification systems without using interpolation techniques and proposes a novel online signature verification system based on a signer-dependent sampling frequency. Twenty verifier configurations were created for five different public signature databases and a variety of popular preprocessing approaches and evaluated for 20–40 different sampling rates. Our results show that there is an optimal range for the sampling frequency and the number of sample points that minimizes the error rate of a verifier. A sampling frequency range of 15–50 Hz and a signature point count of 60–240 provided the best accuracies in our experiments. As expected, lower ranges showed inaccurate results; interestingly, however, higher frequencies often decreased the verification accuracy. The results show that one can achieve better or at least the same verification accuracies faster by down-sampling the online signatures before further processing. The proposed system achieved competitive results to state-of-the-art systems for different databases by using the optimal sampling frequency. We also studied the effect of choosing individual sampling frequencies for each signer and proposed a signature verification system based on signer-dependent sampling frequency. The proposed system was tested using 500 different verification methods and improved the accuracy in 92% of the test cases compared to the usage of the original frequency.


Author(s):  
Punam R. Patil ◽  
Bhushan V. Patil

One of the challenging and effective way of identifying person through biometric techniques is Signature verification as compared to traditional handcrafted system, where a forger has access and also attempt to imitate it which is used in commercial scenarios, like bank check payment, business organizations, educational institutions, government sectors, health care industry etc. so the signature verification process is used for human examination of a single known sample. There are mainly two types of signature verification: static and dynamic. i) Static or off-line verification is the process of verifying an electronic or document signature after it has been made, ii) Dynamic or on-line verification takes place as a person creates his/her signature on a digital tablet or a similar device. As compared, Offline signature verification is not efficient and slow for a large number of documents. Therefore although vast and extensive research on signature verification there is need to more focus and review on the online signature verification method to increase efficiency using deep learning.


Sign in / Sign up

Export Citation Format

Share Document