Exploring Two Deep Learning Based Solutions for Improving Endoscopy Artifact Detection

Author(s):  
Radu Razvan Slavescu ◽  
Ioan Catalin Sporis ◽  
Kriszta Gombos ◽  
Kinga Cristina Slavescu
2021 ◽  
Author(s):  
Yipeng Zhang ◽  
Qiujing Lu ◽  
Tonmoy Monsoor ◽  
Shaun A Hussain ◽  
Joe X Qiao ◽  
...  

Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a promising spatial biomarker of the epileptogenic zone. However, visual verification of HFOs is time-consuming and exhibits poor inter-rater reliability. Furthermore, no method is currently available to distinguish HFOs generated from the epileptogenic zone (epileptogenic HFOs: eHFOs) from those generated from other areas (non-epileptogenic HFOs: non-eHFOs). To address these issues, we constructed a deep learning (DL)-based algorithm using HFO events from chronic intracranial electroencephalogram (iEEG) data via subdural grids from 19 children with medication-resistant neocortical epilepsy to: 1) replicate human expert annotation of artifacts and HFOs with or without spikes, and 2) discover eHFOs by designing a novel weakly supervised model (HFOs from the resected brain regions are initially labeled as eHFOs, and those from the preserved brain regions as non-eHFOs). The "purification power" of DL is then used to automatically relabel the HFOs to distill eHFOs. Using 12,958 annotated HFO events from 19 patients, the model achieved 96.3% accuracy on artifact detection (F1 score = 96.8%) and 86.5% accuracy on classifying HFOs with or without spikes (F1 score = 80.8%) using patient-wise cross-validation. Based on the DL-based algorithm trained from 84,602 HFO events from nine patients who achieved seizure-freedom after resection, the majority of such DL-discovered eHFOs were found to be HFOs with spikes (78.6%, p < 0.001). While the resection ratio of detected HFOs (number of resected HFOs/number of detected HFOs) did not correlate significantly with post-operative seizure freedom (the area under the curve [AUC]=0.76, p=0.06), the resection ratio of eHFOs positively correlated with post-operative seizure freedom (AUC=0.87, p=0.01). We discovered that the eHFOs had a higher signal intensity associated with ripple (80-250 Hz) and fast ripple (250-500 Hz) bands at the HFO onset and with a lower frequency band throughout the event time window (the inverted T-shaped), compared to non-eHFOs. We then designed perturbations on the input of the trained model for non-eHFOs to determine the model's decision-making logic. The model probability significantly increased towards eHFOs by the artificial introduction of signals in the inverted T-shaped frequency bands (mean probability increase: 0.285, p < 0.001), and by the artificial insertion of spike-like signals into the time domain (mean probability increase: 0.452, p < 0.001). With this DL-based framework, we reliably replicated HFO classification tasks by human experts. Using a reverse engineering technique, we distinguished eHFOs from others and identified salient features of eHFOs that aligned with current knowledge.


Author(s):  
Byron Smith ◽  
Meyke Hermsen ◽  
Elizabeth Lesser ◽  
Deepak Ravichandar ◽  
Walter Kremers

Abstract Deep learning has pushed the scope of digital pathology beyond simple digitization and telemedicine. The incorporation of these algorithms in routine workflow is on the horizon and maybe a disruptive technology, reducing processing time, and increasing detection of anomalies. While the newest computational methods enjoy much of the press, incorporating deep learning into standard laboratory workflow requires many more steps than simply training and testing a model. Image analysis using deep learning methods often requires substantial pre- and post-processing order to improve interpretation and prediction. Similar to any data processing pipeline, images must be prepared for modeling and the resultant predictions need further processing for interpretation. Examples include artifact detection, color normalization, image subsampling or tiling, removal of errant predictions, etc. Once processed, predictions are complicated by image file size – typically several gigabytes when unpacked. This forces images to be tiled, meaning that a series of subsamples from the whole-slide image (WSI) are used in modeling. Herein, we review many of these methods as they pertain to the analysis of biopsy slides and discuss the multitude of unique issues that are part of the analysis of very large images.


Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


2020 ◽  
Author(s):  
B Böttcher ◽  
E Beller ◽  
A Busse ◽  
F Streckenbach ◽  
M Weber ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
L Pennig ◽  
L Lourenco Caldeira ◽  
C Hoyer ◽  
L Görtz ◽  
R Shahzad ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document