scholarly journals Developing image analysis pipelines of whole-slide images: Pre- and post-processing

Author(s):  
Byron Smith ◽  
Meyke Hermsen ◽  
Elizabeth Lesser ◽  
Deepak Ravichandar ◽  
Walter Kremers

Abstract Deep learning has pushed the scope of digital pathology beyond simple digitization and telemedicine. The incorporation of these algorithms in routine workflow is on the horizon and maybe a disruptive technology, reducing processing time, and increasing detection of anomalies. While the newest computational methods enjoy much of the press, incorporating deep learning into standard laboratory workflow requires many more steps than simply training and testing a model. Image analysis using deep learning methods often requires substantial pre- and post-processing order to improve interpretation and prediction. Similar to any data processing pipeline, images must be prepared for modeling and the resultant predictions need further processing for interpretation. Examples include artifact detection, color normalization, image subsampling or tiling, removal of errant predictions, etc. Once processed, predictions are complicated by image file size – typically several gigabytes when unpacked. This forces images to be tiled, meaning that a series of subsamples from the whole-slide image (WSI) are used in modeling. Herein, we review many of these methods as they pertain to the analysis of biopsy slides and discuss the multitude of unique issues that are part of the analysis of very large images.

2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Emanuela Paladini ◽  
Edoardo Vantaggiato ◽  
Fares Bougourzi ◽  
Cosimo Distante ◽  
Abdenour Hadid ◽  
...  

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems. In this paper, we study different hand-crafted feature-based and deep learning methods using two popular multi-classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features, we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and the state-of-the-art methods in both databases.


2020 ◽  
Vol 12 ◽  
pp. 175883592097141
Author(s):  
Fan Zhang ◽  
Lian-Zhen Zhong ◽  
Xun Zhao ◽  
Di Dong ◽  
Ji-Jin Yao ◽  
...  

Background: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). Methods: We recruited 220 NPC patients and divided them into training ( n = 132), internal test ( n = 44), and external test ( n = 44) cohorts. The primary endpoint was failure-free survival (FFS). Radiomic features were extracted from pretreatment MRI and selected and integrated into a radiomic signature. The histopathological signature was extracted from whole-slide images of biopsy specimens using an end-to-end deep-learning method. Incorporating two signatures and independent clinical factors, a multi-scale nomogram was constructed. We also tested the correlation between the key imaging features and genetic alternations in an independent cohort of 16 patients (biological test cohort). Results: Both radiomic and histopathologic signatures presented significant associations with treatment failure in the three cohorts (C-index: 0.689–0.779, all p < 0.050). The multi-scale nomogram showed a consistent significant improvement for predicting treatment failure compared with the clinical model in the training (C-index: 0.817 versus 0.730, p < 0.050), internal test (C-index: 0.828 versus 0.602, p < 0.050) and external test (C-index: 0.834 versus 0.679, p < 0.050) cohorts. Furthermore, patients were stratified successfully into two groups with distinguishable prognosis (log-rank p < 0.0010) using our nomogram. We also found that two texture features were related to the genetic alternations of chromatin remodeling pathways in another independent cohort. Conclusion: The multi-scale imaging features showed a complementary value in prognostic prediction and may improve individualized treatment in NPC.


2020 ◽  
Vol 7 ◽  
Author(s):  
Mirjami Laivuori ◽  
Johanna Tolva ◽  
A. Inkeri Lokki ◽  
Nina Linder ◽  
Johan Lundin ◽  
...  

Lamellar metaplastic bone, osteoid metaplasia (OM), is found in atherosclerotic plaques, especially in the femoral arteries. In the carotid arteries, OM has been documented to be associated with plaque stability. This study investigated the clinical impact of OM load in femoral artery plaques of patients with lower extremity artery disease (LEAD) by using a deep learning-based image analysis algorithm. Plaques from 90 patients undergoing endarterectomy of the common femoral artery were collected and analyzed. After decalcification and fixation, 4-μm-thick longitudinal sections were stained with hematoxylin and eosin, digitized, and uploaded as whole-slide images on a cloud-based platform. A deep learning-based image analysis algorithm was trained to analyze the area percentage of OM in whole-slide images. Clinical data were extracted from electronic patient records, and the association with OM was analyzed. Fifty-one (56.7%) sections had OM. Females with diabetes had a higher area percentage of OM than females without diabetes. In male patients, the area percentage of OM inversely correlated with toe pressure and was significantly associated with severe symptoms of LEAD including rest pain, ulcer, or gangrene. According to our results, OM is a typical feature of femoral artery plaques and can be quantified using a deep learning-based image analysis method. The association of OM load with clinical features of LEAD appears to differ between male and female patients, highlighting the need for a gender-specific approach in the study of the mechanisms of atherosclerotic disease. In addition, the role of plaque characteristics in the treatment of atherosclerotic lesions warrants further consideration in the future.


Author(s):  
Kevin Faust ◽  
Michael K Lee ◽  
Anglin Dent ◽  
Clare Fiala ◽  
Alessia Portante ◽  
...  

Abstract Background Modern molecular pathology workflows in neuro-oncology heavily rely on the integration of morphologic and immunohistochemical patterns for analysis, classification, and prognostication. However, despite the recent emergence of digital pathology platforms and artificial intelligence-driven computational image analysis tools, automating the integration of histomorphologic information found across these multiple studies is challenged by large files sizes of whole slide images (WSIs) and shifts/rotations in tissue sections introduced during slide preparation. Methods To address this, we develop a workflow that couples different computer vision tools including scale-invariant feature transform (SIFT) and deep learning to efficiently align and integrate histopathological information found across multiple independent studies. We highlight the utility and automation potential of this workflow in the molecular subclassification and discovery of previously unappreciated spatial patterns in diffuse gliomas. Results First, we show how a SIFT-driven computer vision workflow was effective at automated WSI alignment in a cohort of 107 randomly selected surgical neuropathology cases (97/107 (91%) showing appropriate matches, AUC = 0.96). This alignment allows our AI-driven diagnostic workflow to not only differentiate different brain tumor types, but also integrate and carry out molecular subclassification of diffuse gliomas using relevant immunohistochemical biomarkers (IDH1-R132H, ATRX). To highlight the discovery potential of this workflow, we also examined spatial distributions of tumors showing heterogenous expression of the proliferation marker MIB1 and Olig2. This analysis helped uncovered an interesting and unappreciated association of Olig2 positive and proliferative areas in some gliomas (r = 0.62). Conclusion This efficient neuropathologist-inspired workflow provides a generalizable approach to help automate a variety of advanced immunohistochemically compatible diagnostic and discovery exercises in surgical neuropathology and neuro-oncology.


Author(s):  
Oleksandr Dudin ◽  
◽  
Ozar Mintser ◽  
Oksana Sulaieva ◽  
◽  
...  

Introduction. Over the past few decades, thanks to advances in algorithm development, the introduction of available computing power, and the management of large data sets, machine learning methods have become active in various fields of life. Among them, deep learning possesses a special place, which is used in many spheres of health care and is an integral part and prerequisite for the development of digital pathology. Objectives. The purpose of the review was to gather the data on existing image analysis technologies and machine learning tools developed for the whole-slide digital images in pathology. Methods: Analysis of the literature on machine learning methods used in pathology, staps of automated image analysis, types of neural networks, their application and capabilities in digital pathology was performed. Results. To date, a wide range of deep learning strategies have been developed, which are actively used in digital pathology, and demonstrated excellent diagnostic accuracy. In addition to diagnostic solutions, the integration of artificial intelligence into the practice of pathomorphological laboratory provides new tools for assessing the prognosis and prediction of sensitivity to different treatments. Conclusions: The synergy of artificial intelligence and digital pathology is a key tool to improve the accuracy of diagnostics, prognostication and personalized medicine facilitation


2020 ◽  
Vol 14 (4) ◽  
pp. 470-487
Author(s):  
Shujian Deng ◽  
Xin Zhang ◽  
Wen Yan ◽  
Eric I-Chao Chang ◽  
Yubo Fan ◽  
...  

2020 ◽  
pp. 1-9
Author(s):  
Ewen David McAlpine ◽  
Liron Pantanowitz ◽  
Pamela M. Michelow

<b><i>Background:</i></b> The incorporation of digital pathology into routine pathology practice is becoming more widespread. Definite advantages exist with respect to the implementation of artificial intelligence (AI) and deep learning in pathology, including cytopathology. However, there are also unique challenges in this regard. <b><i>Summary:</i></b> This review discusses cytology-specific challenges, including the need to implement digital cytology prior to AI; the large file sizes and increased acquisition times for whole slide images in cytology; the routine use of multiple stains, such as Papanicolaou and Romanowsky stains; the lack of high-quality annotated datasets on which to train algorithms; and the considerable computer resources required, in terms of both computer infrastructure and skilled personnel, for computing and storage of data. Global concerns regarding AI that are certainly applicable to cytology include the need for model validation and continued quality assurance, ethical issues such as the use of patient data in developing algorithms, the need to develop regulatory frameworks regarding what type of data can be utilized and ensuring cybersecurity during data collection and storage, and algorithm development. <b><i>Key Messages:</i></b> While AI will likely play a role in cytology practice in the future, applying this technology to cytology poses a unique set of challenges. A broad understanding of digital pathology and algorithm development is desirable to guide the development of algorithms, as well as the need to be cognizant of potential pitfalls to avoid when incorporating the technology in practice.


2017 ◽  
Author(s):  
Peter Bankhead ◽  
Maurice B Loughrey ◽  
José A Fernández ◽  
Yvonne Dombrowski ◽  
Darragh G McArt ◽  
...  

AbstractQuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, extensible, open-source solution for digital pathology and whole slide image analysis. In addition to offering a comprehensive panel of tumor identification and high-throughput biomarker evaluation tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an extensible platform with which to develop and share new algorithms to analyze complex tissue images. Furthermore, QuPath’s flexible design makes it suitable for a wide range of additional image analysis applications across biomedical research.


Sign in / Sign up

Export Citation Format

Share Document