β-spread of Sets in Metric Spaces and Critical Values of Smooth Functions

Author(s):  
Yosef Yomdin
2019 ◽  
Vol 62 (4) ◽  
pp. 1173-1187
Author(s):  
Kazuhiro Kawamura

AbstractFor a compact metric space (K, d), LipK denotes the Banach algebra of all complex-valued Lipschitz functions on (K, d). We show that the continuous Hochschild cohomology Hn(LipK, (LipK)*) and Hn(LipK, ℂe) are both infinite-dimensional vector spaces for each n ≥ 1 if the space K contains a certain infinite sequence which converges to a point e ∈ K. Here (LipK)* is the dual module of LipK and ℂe denotes the complex numbers with a LipK-bimodule structure defined by evaluations of LipK-functions at e. Examples of such metric spaces include all compact Riemannian manifolds, compact geodesic metric spaces and infinite compact subsets of ℝ. In particular, the (small) global homological dimension of LipK is infinite for every such space. Our proof uses the description of point derivations by Sherbert [‘The structure of ideals and point derivations in Banach algebras of Lipschitz functions’, Trans. Amer. Math. Soc.111 (1964), 240–272] and directly constructs non-trivial cocycles with the help of alternating cocycles of Johnson [‘Higher-dimensional weak amenability’, Studia Math.123 (1997), 117–134]. An alternating construction of cocycles on the basis of the idea of Kleshchev [‘Homological dimension of Banach algebras of smooth functions is equal to infinity’, Vest. Math. Mosk. Univ. Ser. 1. Mat. Mech.6 (1988), 57–60] is also discussed.


2020 ◽  
Vol 27 (03) ◽  
pp. 447-454
Author(s):  
Lacey Johnson ◽  
Kevin Knudson

In the study of smooth functions on manifolds, min-max theory provides a mechanism for identifying critical values of a function. We introduce a discretized version of this theory associated to a discrete Morse function on a (regular) cell complex. As applications we prove a discrete version of the mountain pass lemma and give an alternate proof of a discrete Lusternik–Schnirelmann theorem.


2014 ◽  
Vol 227 (2) ◽  
pp. 97-128 ◽  
Author(s):  
Jim Conant ◽  
Victoria Curnutte ◽  
Corey Jones ◽  
Conrad Plaut ◽  
Kristen Pueschel ◽  
...  

2012 ◽  
Vol 10 (01) ◽  
pp. 91-111 ◽  
Author(s):  
NAT SMALE ◽  
STEVE SMALE

In previous work, with Bartholdi and Schick [1], the authors developed a Hodge–de Rham theory for compact metric spaces, which defined a cohomology of the space at a scale α. Here, in the case of Riemannian manifolds at a small scale, we construct explicit chain maps between the de Rham complex of differential forms and the L2 complex at scale α, which induce isomorphisms on cohomology. We also give estimates that show that on smooth functions, the Laplacian of [1], when appropriately scaled, is a good approximation of the classical Laplacian.


2009 ◽  
Vol 01 (04) ◽  
pp. 541-554
Author(s):  
J. F. WENG ◽  
I. MAREELS ◽  
D. A. THOMAS

The Steiner tree problem is a well known network optimization problem which asks for a connected minimum network (called a Steiner minimum tree) spanning a given point set N. In the original Steiner tree problem the given points lie in the Euclidean plane or space, and the problem has many variants in different applications now. Recently a new type of Steiner minimum tree, probability Steiner minimum tree, is introduced by the authors in the study of phylogenies. A Steiner tree is a probability Steiner tree if all points in the tree are probability vectors in a vector space. The points in a Steiner minimum tree (or a probability Steiner tree) that are not in the given point set are called Steiner points (or probability Steiner points respectively). In this paper we investigate the properties of Steiner points and probability Steiner points, and derive the formulae for computing Steiner points and probability Steiner points in ℓ1- and ℓ2-metric spaces. Moreover, we show by an example that the length of a probability Steiner tree on 3 points and the probability Steiner point in the tree are smooth functions with respect to p in d-space.


1969 ◽  
Vol 130 (1-6) ◽  
pp. 277-303 ◽  
Author(s):  
Aloysio Janner ◽  
Edgar Ascher

2016 ◽  
Vol 2017 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Muhammad Usman Ali ◽  
◽  
Tayyab Kamran ◽  
Mihai Postolache ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document